Name

CSE 370 - Introduction to Digital Logic Design

Spring 2010
Quiz \#2
For maximum credit, show all your work. Please raise your hand if you have a question.
Design a circuit that determines the number of leading 0's in a 3-bit number. Since the output value can be $0-3$, the output is a 2 -bit number. For example, if the input is 001 , the output is 10 (2) and if the input is 101 , the output is $00(0)$. Thus you need to design two functions of three inputs, one for each output bit. Draw a circuit implementation of these functions using only NAND gates and inverters.

Hint: Truth table \rightarrow Boolean equation \rightarrow AND/OR circuit \rightarrow NAND only circuit [Extra credit: Find a cheap circuit. We measure the cost of the circuit by counting all the inputs of all the gates. Inverters are free.]

A	B	C	F1	F0
0	0	0	1	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

$\mathrm{F} 1=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$
$\mathrm{F} 2=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC} C^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}=\mathrm{A}^{\prime}\left(\mathrm{B}+\mathrm{C}^{\prime}\right)$
Extra credit:
+1 for ≤ 10 literals
+2 for ≤ 8 literals
+3 for ≤ 6 literals

