
CSE370 HW1 Solutions (Winter 2010) 
 
General Note: I noticed a lot of people did the wrong problem and didn’t do the extra bits as described 
on the assignment webpage, please take care when reading the assignment and problems. 
 

1. CLD2e, A.1 
a. Part c 

01010112 
= 1(20) + 1(21) + 0(22) + 1(23) + 0(24) + 1(25) + 0(26) 
= 1(20) + 1(21) + 1(23) + 1(25) 
 = 1(1) + 1(2) + 1(8) + 1(32) 
= 1 + 2 + 8 + 32 
= 4310 

 
b. Part d 

7578 
= 7(80) + 5(81) + 7(82) 
=7(1) + 5(8) + 7(64) 
= 7 + 40 + 448 
= 49510 

 
c. Part g 

FFA16 
= 10(160) + 15(161) + 15(162) 
= 10(1) + 15(16) + 15(256) 
= 10 + 240 + 3840 
= 409010 

 
Tip: To figure out something like 83 or 162 in your head just remember your powers of 2!  E.g. 8 = 
23 and so 83 = (23)3 = 29 = 512…similarly 16 = 24 so 162 = (24)2 = 28 = 256! 
 

2. CLD2e, A.2 
a. Part c 

129 to base 2 
129 / 2 = 64 r 1 
64 / 2 = 32 r 0 
32 / 2 = 16 r 0 
16 /2 = 8 r 0 
8 / 2 = 4 r 0 
4 / 2 = 2 r 0 
2 / 2 = 1 r 0 
1 / 2 = 0 r 1 
12910 = 100000012 

We can check our work by converting because to base 10: 
= 1(20) + 1(27) 
= 1 + 128 
= 12910 



 
b. Part g 

1023 to base 16 
1023 / 16 = 63 r 15 
63 / 16 = 3 r 15 
3 / 16 = 0 r 3 
102310 = 3FF16  

Again, always a good idea to check your work: 
 = 15(160) + 15(161) + 3(162) 
 = 15(1) + 15(16) + 3(256) 
 = 15 + 240 + 768 
 = 102310 

3. CLD2e, A.4 
When converting to binary from a base that is a power of two you should first realize that each 
digit in the original base will convert to an integral number of digits in binary … as a result, each 
digit can be converted to binary independently and then concatenated together.  The number of 
digits depends on the original base.  Base 8 is base 23 which means you need 3 binary digits to 
represent it. Similarly, for base 16 = base 24 you need 4 binary digits to represent each digit in 
that base. Note that this trick only works because our original base is a power of two. 
 
Some people first converted to base 10 and then to binary, this is a lot more work and slower. 
 

a. Part a 
2528 

|2|5|2| 
28 = 0102 
58 = 1012 
28 = 0102 

|010|101|010| 

0101010102 

Check: 
 = 2 +8 + 32 + 128 
 = 17010 
  170 / 8 = 21 r 2 
  21 / 8 = 2 r 5 
  2 / 8 = 0 r 2 
 =2528 

 
b. Part d 

AFE016 

|A|F|E|0| 
 A16 = 10102 
 F16 = 11112 

 E16 = 11102 
 016 = 00002 

|1010|1111|1110|0000| 
10101111111000002 

 Check: 



 = 32 + 64 + 128 + 256 + 512 + 1024 + 2048 + 8192 + 32768 
 = 45024 
  45024 / 16 = 2814 r 0 
  2814 / 16 = 175 r 14 
  175 / 16 = 10 r 15 
  10 / 16 = 0 r 10 
 = AFE016 

 
4. CLD2e, A.7 

a. Part b 
1101112 + 1012 

 

First I am going to pad the second number out so that it has the same number of digits: 
= 1101112 + 0001012 
 
We will perform the addition starting from the least significant digits and moving to the 
more significant digits, just like addition in base 10. And just like in addition in base ten 
we will keep track of whether we need to carry a 1 or not. 
      1 + 1 = 0 + carry(c) 
c + 1 + 0 = 0 + c 
c + 1 + 1 = 1 + c 
c + 0 + 0 = 1 
      1 + 0 = 1 
      1 + 0 = 1 
Reading off the column after = we get the answer: 
= 1111002 

 We can check the result by performing the addition in base 10: 
 55 + 5 = 6010 
 60 / 2 = 30 r 0 
 30 / 2 = 15 r 0 
 15 / 2 = 7 r 1 
 7 / 2 = 3 r 1 
 3 / 2 = 1 r 1 
 1 / 2 = 0 r 1 
 = 1111002 

 
b. Part e 

110111001102 + 100110012 

 
First I will pad the second number so it has the same number of digits: 
110111001102 + 000100110012 

 
I will follow the same procedure as before adding the number digit by digit starting with 
the least significant digit: 
      0 + 1 = 1 
      1 + 0 = 1 
      1 + 0 = 1 
      0 + 1 = 1 



      0 + 1 = 1 
      1 + 0 = 1 
      1 + 0 = 1 
      1 + 1 = 0 + carry(c) 
c + 0 + 0 = 1 
      1 + 0 = 1 
      1 + 0 = 1 
Reading off the column after = we get the answer: 
= 111011111112 
 This time let’s check by adding in base 16: 
 6E616 + 09916 

       6 + 9 = F 
       E + 9 = 7 + carry(c) 
 c + 6 + 0 = 7 
 = 77F16 

 =|0111|0111|1111| 
 = 111011111112 

 
5. CLD2e, 1.3 and 1.4 

a. 1.3 
There are a lot of potential encodings for the cards. I will describe three common ones, 
but there may be others. Some people just reordered their bits for their second 
encoding. This is technically another encoding, but the point of this problem (along with 
1.4) is to show how easy/hard it can be to represent different concepts using different 
encodings. 
 
For all the encodings, the suit order we will use is hearts, diamonds, clubs, spades. The 
rank order is Ace to King. 
 
Number-Per-Card Encoding 
Since there are 52 cards, we can encode this with 6 bits which can encode up to 64 
values. Each card could just be uniquely defined. This would be a good choice if we 
never needed to distinguish between cards of the same suit…on the other hand if we 
want combinatorial logic to do something special when a card has a certain suit then 
this type of encoding would make that logic more complex (see part 1.4) 
 
E.g. 010 = 000000 = A of Hearts 
 110 = 000001 = 2 of Hearts 
 … 
 5010 = 110010 = Q of Spades 
 5110 = 110011 = K of Spades 
 
Rank-Suit Encoding 
The design rational behind this encoding is that we can use 2 bits for the suit and 4 bits 
(16 values, of which we only need 13) to represent the rank. We then append the 6 bits 
together to get our value. This is just as compact as the previous representation, but as 
you will see from 1.4 it makes it easier to represent all cards of a single suit. 
 



E.g. 0000 00 = A of Hearts 
 0001 00 = 2 of Hearts 
 … 
 1011 11 = Q of Spades 
 1100 11 = K of Spades 
 
One-Hot Encoding 
Each suit can be represented by a one-hot encoding of 4 bits. Also, each rank can be 
encoded using a one-hot encoding of 13 bits. Appending these together gives us 17 bits 
total. As alternatives, some people used a “one-hot encoding” for just the suit or just 
the rank and a binary encoding for the other. This encoding has the benefit that it is 
easy to write an expression for a single rank or single suit (see 1.4), but uses a lot of 
wires. 
 
E.g.   0000000000001 0001 = A of Hearts 
 0000000000010 0001 = 2 of Hearts 

   … 
 0100000000000 1000 = Q of Spades 

1000000000000 1000 = K of Spades 
 

b. 1.4 
Note: A lot of people had issues with this. The problem states that you should come up 
with a “logic expression” for different cases for *each* encoding above. A lot of people 
only did one of their encodings. Also, a lot of people just gave the value for each of the 
examples, instead of the logic expression. A logic expression is a formula i.e. F=ABCD 
 
For encoding 1, let us name the bits A B C D E F. 
For encoding 2, let us name the bits A B C D S2 S1. 
For encoding 3, let us name the bits R12-R0 S C D H 
 
Also, my formulae assume no invalid input. 
 

i. A jack of diamonds 
Number-Per-Card: J_D = A’B’CDE’F  ((13*1+10)-1 = 2510 = 001101) 
Rank-Suit:  J_D = AB’CD’S2’S1 
One-Hot:  J_D = R10D 
 

ii. A seven of any suit 
Number-Per-Card: Seven = A’B’C’DEF’ + A’BC’D’EF + AB’C’D’E’F’ + AB’CDE’F 
Rank-Suit:  Seven = A’BCD’ 
One-Hot:  Seven = R6 
 

iii. Any card of hearts suit 
Number-Per-Card: Heart = A’B’C’D’E’F’ + A’B’C’D’E’F + A’B’C’D’EF’ + 

A’B’C’D’EF + A’B’C’DE’F’ + A’B’C’DE’F + A’B’C’DEF’ + 
A’B’C’DEF + A’B’CD’E’F’ + A’B’CD’E’F + A’B’CD’EF’ + 
A’B’CD’EF + A’B’CDE’F’ 

Rank-Suit:  Heart = S2’S1’ 



One-Hot:  Heart = H 
 

6. CLD2e, 1.9 then realize your equation using AND, OR, and NOT gates (width as many inputs as 
needed) 
 
Note: A lot of people wrote out the formulae using words for the month e.g. “February”. Also 
some people used “m2” for February etc. You need to make sure you specify things in terms of 
the bits themselves. E.g. February = m8’m4’m2m1’ 
 
This changes the truth table to be: 
m8 m4 m2 m1 L d28 d29 d30 d31 

0 0 0 0 X X X X X 

0 0 0 1 X 1 1 1 1 
0 0 1 0 0 1 0 0 0 
0 0 1 0 1 1 1 0 0 
0 0 1 1 X 1 1 1 1 
0 1 0 0 X 1 1 1 0 
0 1 0 1 X 1 1 1 1 
0 1 1 0 X 1 1 1 0 
0 1 1 1 X 1 1 1 1 
1 0 0 0 X 1 1 1 1 
1 0 0 1 X 1 1 1 0 
1 0 1 0 X 1 1 1 1 
1 0 1 1 X 1 1 1 0 
1 1 0 0 X 1 1 1 1 
1 1 0 1 X X X X X 
1 1 1 0 X X X X X 
1 1 1 1 X X X X X 
 
From this truth table we can see that: 
d28 = 1      “every month” 
d29 = (m8’m4’m2m1’L’)’ = m8 + m4 + m2’ + m1 + L “every month except Feb. in a non-leap year” 
d30 = (m8’m4’m2m1’)’ = m8 + m4 + m2’ + m1 “every month except Feb.” 
d31 = m8’m4’m2’m1 + m8’m4’m2m1 + m8’m4m2’m1 + m8’m4m2m1 + m8m4’m2’m1’ + m8m4’m2m1’ + 
m8m4m2’m1’ = m8m1’ + m8’m1 
 
Note that in my solution I am setting the “don’t cares” to 1 when beneficial. Some people just 
used all the minterms and that is fine, but this is a more compact representation. 
 
A couple notes: 
1) Assume you can always just set an output to true or false as I did with d28 
2) One could have written the outputs for d29 and d30 with minterms, but doing it with 

maxterms results in a smaller circuit. 
 
The circuit diagrams for these is as follows: 



 
 
 

7. CLD2e, 2.2, part e 
Draw a schematic for W(X + YZ) 

 
 
When asked to draw these schematics I like to start with the smallest terms, in this case “Y AND 
Z” and then work outward to the larger terms. So next we will add the “OR X”, and then finally, 
we can perform the final AND. 
 

8. CLD2e, 2.9 
Prove: 
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BC + A’B’ + A’C’ = ABC + A’ 
 
BC + A’B’ + A’C’ 
(B’+C’)’ + (A+B)’ + (A+C)’  DeMorgan’s Law [12] (x3) 
((B’+C’)(A+B)(A+C))’  DeMorgan’s Law [12D] 
((B’+C’)(A + BC))’  Distributive Law [8D] 
(A(B’+C’) + BC(B’+C’))’  Distributive Law [8] 
(AB’ + AC’ + B’BC + BCC’)’ Distributive Law [8] (x2) 
(AB’ + AC’ + 0C + 0B)’  Theorem of Complementarity [5D] (x2) 
(AB’ + AC’)’   Operations with 0 [2D] (x2) 
(A(B’+C’))’   Distributive Law [8] 
A’ + (B’+C’)’   DeMorgan’s Law *12D] 
A’ + BC    DeMorgan’s Law [12] 
A’ + ABC   Simplification Theorem [11D] 
ABC + A’   Commutative Law [6] 

 
 

9. CLD2e, 2.12 then derive an XOR implementation using only NOR gates 
From the diagram we can construct a term from each of the gates: 
(  (X (XY)’ )’  (Y (XY)’ )’  )’ 
(X (XY)’ ) + (Y (XY)’ )   DeMorgan’s Law *12D+ 
X(X’+Y’) + Y(X’+Y’)   DeMorgan’s Law *12D+ (x2) 
XX’ + XY’ + X’Y + YY’   Distributive Law [8] (x2) 
0 + XY’ + X’Y + 0    Theorem of Complementarity [5D] (x2) 
XY’ + X’Y    Operations with 0 [1] (x2) 
X XOR Y     Definition of XOR 

 
To construct the circuit using only NOR gates we can work backwards: 
XY’ + X’Y 
0 + XY’ + X’Y + 0    Operations with 0 [1] (x2) 
XX’ + XY’ + X’Y + YY’   Theorem of Complementarity [5D] (x2) 
X(X’+Y’) + Y(X’ + Y’)   Distribitive Law [8] (x2) 
(X+Y)(X’+Y’)    Distributive Law [8] 
(  (  (X+Y)(X’+Y’)  )’  )’   Involution Theorem [4] 
(  (X+Y)’ + (X’+Y’)’  )’   DeMorgan’s Law *12D+ 
(  (X+Y)’ + (  (X+X)’ + (Y+Y)’  )’  )’  Idempotent Theorem [3] (x2) 

 
Now we have a formula that only uses NOR operations so we can draw the circuit: 



 
 
There is an alternative circuit that also computes XOR using NOR gates and can be derived as 
follows: 
XY’ + X’Y 
0 + XY’ + X’Y + 0       Operations with 0 [1] (x2) 
YY’ + XY’ + X’Y + XX’      Theorem of Comp. [5D] (x2) 
Y’(X+Y) + X’(X+Y)      Distributive Law [8] (x2) 
( Y + (X+Y)’ )’  +  ( X +(X+Y)’ )’     Involution Theorem [4] (x2) 
We are close at this point but we only have an OR not a NOR at the top level… 
 
(  (Y + (X+Y)’)’ + (X +(X+Y)’)’  )(  (Y + (X+Y)’)’ + (X +(X+Y)’)’  ) Idempotent Theorem [3D] 
(  (  (Y + (X+Y)’)’ + (X +(X+Y)’)’  )’ + (  (Y + (X+Y)’)’ + (X +(X+Y)’)’  )’  )’ DeMorgan’s Law *12D+ 
 
What we are doing in the last step is as follows: 
Let A = ( Y + (X+Y)’ )’  +  ( X +(X+Y)’ )’ 
A = AA = ((AA)’)’ = (A’ + A’)’ 
…so our A is negated, turning the OR into a NOR, and the whole thing is itself another NOR. 
The circuit diagram for this is as follows: 

 
 
Note that although the formula is quite large we can reuse values in the circuit giving us a fairly 
compact final circuit. 
 
Some people arrived at this diagram by adding “bubbles” to the NAND diagram. This usually 
resulted in inverting the X and Y inputs. However, this is actually unnecessary since XOR with 
inverted inputs is still XOR, i.e. X XOR Y = X’ XOR Y’ 
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