
CSE370 HW4 Solutions (Winter 2010) 
 

1. Verilog Calendar 
There were many correct ways to approach this problem. My solution is just one potential one. 
A couple of general comments about the problem: 

 Some people used some Verilog features that we haven’t talked about yet: integers, 
functions, etc. Try to avoid these. 

 Some people used while and for loops. These loops don’t necessarily behave like they 
would in a programming language. In many cases loops are “unrolled” and produce N 
copies of the body. 

 A lot of people missed some of the error cases. The main things is to make sure that you 
address all the corner cases: 
1. Day must not be 0, and must be less than 32. 
2. Day must be less than 31 for all months that don’t have 31 days 
3. Day must be less than 30 for February 
4. Day must be less than 29 for February if it is not a leap year 
5. Month must not be 0, 13, 14, or 15. 
6. You can’t just add the leap year bit into the total because in January and February 

the leap day hasn’t yet occurred. 

 Finally, some people got the “All Tests Passed” output even when their code had errors 
in it. It is important not to rely too much on the test fixture because in general they do 
not test every case that your circuit might encounter. Also, your circuit may have been 
outputting “z” or holding a value from a previous case in a register, which could cause 
things to mess up. 

 
Anyway, here is my code so that you can look at to see a different implementation from your 
own: 
//---------------------------------------------------------------------- 
// Title       : Calendar module 

// Design      : Homework 4 Calendar (Problem 1) 
// Author      : Gaetano Borriello and Craig Prince 
// Company     : CSE 370 

// 
//---------------------------------------------------------------------- 
// 

// File        : cal.v 
// 
// Description : This module computes the index of the specified in  

//               the year given the month, day of the month, and  
//               whether the year is a leap year.  It also raises an  
//               error flag if there is a problem with the input values. 

//---------------------------------------------------------------------- 
`timescale 1ns / 1ns 
 
 
module cal (MONTH, DAY, LEAP_YEAR, DAY_OF_YEAR, ERROR); 
 
input  [3:0] MONTH;  // Data input for month of the year  

input  [4:0] DAY;   // Data input for day of the month  

input        LEAP_YEAR;  // Data input for leap year flag  
output [9:0] DAY_OF_YEAR; // Results from calendar subsystem 

output       ERROR;  // Error flag from calendar subsystem 



 
reg    [9:0] DAY_OF_YEAR; // Data input 

reg          ERROR;  // Data input 

 
reg [8:0] offset;   // Day offset of the start of month 

reg [4:0] daysinmonth;  // Total days in the month 

 
always @(MONTH or DAY or LEAP_YEAR) begin 
 // Get number of days in the month 
 case({MONTH,LEAP_YEAR})  // Appending the month and leap year 

  5'b00010, 5'b00011,  // Jan - 31 day months 

  5'b00110, 5'b00111,   // Mar 
  5'b01010, 5'b01011,   // May 
  5'b01110, 5'b01111,  // Jul 

  5'b10000, 5'b10001,  // Aug 
  5'b10100, 5'b10101,  // Oct 
  5'b11000, 5'b11001:  // Dec 

   daysinmonth[4:0] = 31; 
  5'b00100:    // Feb, no leap 

   daysinmonth[4:0] = 28; 

  5'b00101:    // Feb, leap 
   daysinmonth[4:0] = 29; 
  5'b01000, 5'b01001,   // Apr - 30 day months 

  5'b01100, 5'b01101,  // Jun 
5'b10010, 5'b10011,  // Sep 

  5'b10110, 5'b10111:  // Nov 

   daysinmonth[4:0] = 30; 
  default:    // Error 

   daysinmonth[4:0] = 0;  
 endcase 
 

 // Get the month offset 
 case ({MONTH,LEAP_YEAR}) // Appending the month and leap year 

  5'b00010, 5'b00011: // January 
   offset[8:0] = 0; 
   

  5'b00100:   // February (+31) 
   offset[8:0] = 31; 
  5'b00101: 

   offset[8:0] = 31; 
   
  5'b00110:   // March (+28 | +29) 

   offset[8:0] = 59; 
  5'b00111: 
   offset[8:0] = 60; 

   
  5'b01000:   // April (+31) 
   offset[8:0] = 90; 

  5'b01001: 
   offset[8:0] = 91; 
   

  5'b01010:   // May (+30) 
   offset[8:0] = 120; 

  5'b01011: 

   offset[8:0] = 121; 
   
  5'b01100:   // June (+31) 

   offset[8:0] = 151; 
  5'b01101: 
   offset[8:0] = 152; 

   
  5'b01110:   // July (+30) 
   offset[8:0] = 181; 

  5'b01111: 



   offset[8:0] = 182; 

   

  5'b10000:   // August (+31) 
   offset[8:0] = 212; 
  5'b10001: 

   offset[8:0] = 213; 
   
  5'b10010:   // September (+31) 

   offset[8:0] = 243; 
  5'b10011: 
   offset[8:0] = 244; 

   
  5'b10100:   // October (+30) 
   offset[8:0] = 273; 

  5'b10101: 
   offset[8:0] = 274; 
   

  5'b10110:   // November (+31) 
   offset[8:0] = 304; 

  5'b10111: 

   offset[8:0] = 305; 
 
  5'b11000:   // December (+30) 

   offset[8:0] = 334; 
  5'b11001: 
   offset[8:0] = 335; 
 endcase 
  
 // Handle all the error cases and calculate the result 
 if( DAY == 0 || DAY > daysinmonth ) 
  begin 
   ERROR = 1; 
   DAY_OF_YEAR  = 0; 
  end 
 else 
  begin 
   ERROR = 0; 

   DAY_OF_YEAR = offset + DAY; 
  end 
end 
  
endmodule 

 
 

2. CLD2e, 5.9 part a/b 
I am going to do parts a and b together because it is easier to put the delays directly on the 
circuits as I draw them. 
 
For the 32-bit adder we basically need to replicate a circuit that is similar in structure to Figure 
5.18 in the book, but only half as long. When we do this we get a circuit as follows: 
 



 
 
This 32-bit adder uses 2x 16-bit adders. To show the delay of the longest path through this 
circuit I am going to draw it showing the internals of some of the boxes, I have then highlighted 
the longest path, annotating the delays along it: 
 

 
 
So the longest path for the 32-bit adder requires 11 gate delays. 
 
Note: Some people noticed that there is actually a way to get a slightly faster 32-bit adder. If we 
chain two 16-bit adders together instead of using another level of Propagate/Generate logic 
then we can save one gate delay for a total of 10 delays. That diagram is as follows: 
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Now for the 64-bit adder, we get a similar circuit: 
 

 
 
If we analyze the delay of this circuit it goes almost exactly as in the 32-bit case…however, 
within the top-level LCU it takes one more gate delay to generate C48 than it took to generate 
C16. Everything else remains the same. As a result the delay for the 64-bit adder is 12 gate 
delays. 
 
Thus, the final solution is that the 32-bit adder has a worst-case delay of 11, while the 64-bit 
adder has a worst case delay of 12. 
 
Note: A lot of people figured out the correct delay for the carry-in to the last 16-bit adder (@7), 
but messed up with the delay within the last 16-bit adder. Some people said that the last stage 
added +8 delay which is the normal delay of a 16-bit adder. Also, some people added +3 delay 
(the delay of the 4-bit adder). But really the last 16-bit adder adds +5 delay. 
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Consider a 16-bit adder where the inputs A and B and C0 are available @0, then it is true that 
the output is available 8 gates later (@8). However, if the carry-in is not available until @7, then 
our P and G from each 4-bit adder would already have been computed and be available before 
C0 is available (@2 and @3, respectively). However, our LCU can’t start until it has C0, which it 
won’t get until @7. At this point, it takes +1 delay to calculate C4 and +2 delay for C8 and C12. 
This means C12 won’t be ready until @9, then there is another +2 delay within the 4-bit adder’s 
LCU to generate C15 internally @11. Finally C15, can be used to calculate the S[15] with an 
additional +1 delay @12! This is why we get the +5 delay. See Appendix A for another way to 
think about delay. 
 

3. CLD2e, 5.10 
This problem asks us to compare a 16-bit carry-select adder to a 16-bit ripple-carry adder and a 
16-bit carry-lookahead adder. The problem asks us to assume that we have an 8-bit carry-
lookahead adder as a basic unit to build our carry-select adder. Let us first examine the delay of 
this 8-bit subcomponent. We have the following design for our 8-bit adder. 
 

 
 
From this we see that when all the inputs are there @0, then the sum is generate @7 and the 
carry-out is generated @5. 
 
Note: Many people stated that the delay for an 8-bit carry-lookahead adder would be 4 gate 
delays. This is technically true, but to build this circuit you would need a very large amount of 
logic to calculate the C8 bit in the Carry-Lookahead Unit. In fact you would need an 8-input OR 
gate, and (9,8,…,2)-input AND gates. In reality, these large gates would be really slow which is 
why we have gone with the design above.  
 
Now that we have this 8-bit adder and know the delay of its outputs, we can figure the delay of 
our larger adder. The larger circuit is seen below: 
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From this diagram we can see that the inputs to all adders are available @0 and that means it 
takes 7 gate delays to get the inputs to the MUXes. The MUXes add 2 more gate delays for a 
total of @9. This is the worst case delay for this circuit. 
 
Next we need to contrast this against a 16-bit carry-lookahead adder as well as a 16-bit ripple-
carry adder. For the 16-bit carry-lookahead adder we can see from Figure 5.18 in the book that 
the delay is 8. For the ripple-carry adder if we chain 16 1-bit adders each carry out will require 
two gate delays for a total of 16x2=32 gate delays. 
 
To summarize the delay for each adder is: carry-select = 9, carry-lookahead = 8, ripple-carry = 
32. 
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Appendix A 
Here I wanted to expand a little bit more on how to deal a little more formally with estimating the delay 
of hierarchical components. This is mostly to give people another way to think about delay. If you find 
another method more clear then feel free to ignore this.  Fundamentally, we are trying to find the 
longest path through our circuit. However, this gets complicated when we have boxes like an 8-bit or 16-
bit adder. 
 
We can’t just find the longest path through the component and then use that as our delay for the 
component because that longest path assumes that all inputs arrive at the same time (i.e. the longest 
path up until reaching every input has been the same delay). 
 
The trick instead is to consider the longest gate delay from every input to every output. So if our 
component has inputs A,B,C,D and outputs X,Y,Z. Then we need to find the longest delays: delay(A,X), 
delay(B,X), delay(C,X), delay(D,X), delay(A,Y)…delay(D,Z). With this information it is pretty easy to see 
that if we have the longest delays up until input A,B,C,D (call them dA, dB, dC, dD), we can easily calculate 
the longest path for each output X,Y,Z as follows: 

dX (dA,dB,dC,dD) = MAX[ dA + delay(A,X), dB + delay(B,X), dC + delay(C,X), dD + delay(D,X) ]; 
dY (dA,dB,dC,dD) = MAX[ dA + delay(A,Y), dB + delay(B,Y), dC + delay(C,Y), dD + delay(D,Y) ]; 
dZ (dA,dB,dC,dD) = MAX[ dA + delay(A,Z), dB + delay(B,Z), dC + delay(C,Z), dD + delay(D,Z) ]; 

 
So let’s apply this to our circuits in exercise 5.9. Let’s start with trying to figure out the delay behavior of 
the 16-bit adder (Figure 5.18). To do this we need to know the delay behavior of the 4-bit adder and the 
16-bit LCU. 
 
For a 4-bit adder, the dS = MAX[dAB+4, dC0+3], dP = dAB+2, and dG = dAB+3 (here we assume A and B always 
arrive at the same time so we group them into a single input and let the delay be the longest of either 
path). We can summarize the delay behavior as a grid: 
 

4-bit adder dAB + ? dC0 + ? 

dS +4 +3 

dP +2 N/A 

dG +3 N/A 

 
Now we can consider the 4-bit adder as a black box and to calculate the delay for each output and all we 
need to know is the delay value for each input. So in the 16-bit adder, looking at the leftmost adder we 
see that the dAB is @0 and dC12 is @5. So this means that dS[15-12] = MAX[ 0 + 4, 5 + 3 ] = @8! Notice that 
the dP = MAX[ dAB+2 ] = 0+2 = @2 and dG = MAX[ dAB+3 ] = 0+3 = @3, which is exactly what Figure 5.18 
says.  
 
We also need to consider the delay behavior of the LCU in the 16-bit adder. The LCU has inputs 
P3,P2,P1,P0,G3,G2,G1,G0, and C0. It has outputs P3-0,G3-0,C1,C2,C3,C4: 
 

LCU(16) dP3 dP2 dP1 dP0 dG3 dG2 dG1 dG0 dC0 

dP3-0 +1 +1 +1 +1 N/A N/A N/A N/A N/A 

dG3-0 +2 +2 +2 +2 +2 +2 +2 +2 N/A 

dC1 N/A N/A N/A +1 N/A N/A N/A +1 +2 

dC2 N/A N/A +1 +2 N/A N/A +1 +2 +2 



dC3 N/A +1 +2 +2 N/A +1 +2 +2 +2 

dC4 +1 +2 +2 +2 +1 +2 +2 +2 +2 

 
If we make the simplifying assumption that all the P’s arrive at the same time as do all the G’s, then we 
can make the table smaller: 
 

LCU(16) dP dG dC0 

dP3-0 +1 N/A N/A 

dG3-0 +2 +2 N/A 

dC1 +1 +1 +2 

dC2 +2 +2 +2 

dC3 +2 +2 +2 

dC4 +2 +2 +2 

 
With the table for LCU(16) and 4-bit adder we can now describe the behavior for the 16-bit adder… 
 

16-bit adder dAB dC0 

dS MAX[ ds, dP+dC3+dS, dQ+dC3+dS ] = MAX[ 4, 2+2+3, 
3+2+3 ] = MAX[ 4, 7, 8 ] = +8   

MAX [ dC3 + dS ] = MAX[ 2 + 3 ] = 
+5 

dP3-0 MAX[ dP + dP3-0 ] = MAX[ 2 + 1 ] = MAX[ 3 ]= +3 N/A 

dG3-0 MAX[ dP + dG3-0, dG + dG3-0] = MAX[ 2 + 2, 3 + 2 ] = 
MAX[ 4, 5] = +5 

N/A 

dC16 MAX[ dP + dC4, dG + dC4 ] = MAX[ 2 + 2, 3 + 2 ] = MAX[ 
4, 5 ] = +5 

MAX[ dC4 ] = MAX[ 2 ] = +2 

 
So we got each cell by following all paths from the input to the output, whenever we encountered a 
block, we used our lookup tables to determine the delay for passing through that block. Cleaning up the 
table we get: 
 

16-bit adder dAB dC0 

dS +8 +5 

dP3-0 +3 N/A 

dG3-0 +5 N/A 

dC16 +5 +2 

 
Now from the chart is it easy to explain the behavior from Figure 5.18 and also the behavior in Exercise 
5.9 a/b on the homework where component only added +5 to the delay. 
 
When AB and C0 all arrive at the same time (@0), then we see that dS = MAX[0+8, 0+5] = @8 and dC16 = 
MAX[0+5, 0+2] = @5 and dP3-0 = MAX[0+3] = @3 and dG3-0 = MAX[0+5] = @5.  Exactly, matching the 
delays in Figure 5.18. 
 
However, when dAB = @0 and dC0 = @7 (as in 5.9b) we get entirely new delay behavior. Now dS = 
MAX[0+8, 7+5] = MAX[9,12] = @12 and dC16 = MAX[0+5, 7+2] = MAX[5, 9] = @9, while dP3-0 = MAX[0+3] = 
@3 and dG3-0 = MAX[0+5] = @5 still. Voila! 
 
Note that this technique will fail on logic that has feedback. 


