
CSE370 HW6 Solutions (Winter 2010) 
 

1. CLD2e, 6.10 
For this problem we are given a blank waveform with clock and input and asked to draw out the 
how different flip-flops and latches would behave. 
 

CLK                       

                       

D                         

                       

a)                       

                       

b)                       

                       

c)                       

                       

d)                         

                       
 
For (a) and (b), both are negative edge triggered which means that we can basically sample D 
each negative edge of the clock. Those are the only locations that the waveform can change. 
 
For (c), a positive edge triggered flip-flop, we only sample D at each positive edge and so that is 
the only time that the output can change. 
 
For (d), this is a latch so that means the output can change at any time D changes while the clock 
is 1. 
 

2. CLD2e, 6.17 
For this problem we need to show how to implement a T flip-flop using just a D flip-flop. The 
behavior of a T flip-flop is to toggle its output whenever the clock ticks and the input is 1. 
Therefore we get the following truth table to describe the behavior (let T be the input, Q be the 
current output, and Q+ be the next output): 
T Q Q+ 

0 0 0 
0 1 1 
1 0 1 
1 1 0 
 
We can minimize this to show that Q+ = T XOR Q. Now if want to build this circuit out of a D flip-
flop we can use the process we’ve been using for building state machines. Let the flip-flop hold 
the current output (the “state”). Then the “next state” can be described by the “current state” 



and the inputs. In this case the logic is described by our equation. Now we have the state and 
combinational logic so we can realize the circuit: 
 

 
 

3. CLD2e, 6.25 
We saw this example in class so I will pretty much repeat what the professor said and try to 
expand on any points that might be of interest. 
 
Remember the basic problem is to take the 74194 (a universal 4-bit shift register) and then 
implement some additional logic on top of it. 
 
To begin we’ll review what is in the 74194. It has a block diagram as follows: 

 
 
S1 and S0 are two bits that select the operation that the shifter performs.  00 = Hold, 01 = Shift 
Right, 10= Shift left, 11 = Load. LSI is “Left Shift In” which is the value to shift into the right-most 
position if we do a “shift left”. Similarly RSI is “Right Shift In” and gives the value to put in for a 
“shift right”. DCBA are new inputs to store if the register is set to “load”. CLK is the clock. CLR 
clears the shift register. Finally, QA-QD are the outputs of the registers. 
 
Internally, the shift register has the following circuit diagram: 

 

C
L

K

QD

U1

DFlipFlop

Q
T

CLK

I1

I0

O



 
…where each block is a sub-circuit around a D flip-flop: 

 
The MUX handles whether we are doing the hold, shift-right, shift-left, or load. 
 
With this basic building block we need to build a circuit with other types of shift operations. 
Namely, we need to implement: hold, circular shift right, circular shift left, logical shift right, 
logical shift left, arithmetic shift right, arithmetic shift left, and load. Load and hold seem pretty 
straight forward since our 194 has this built right in. Also notice that for all the other shifts, the 
only thing we really need to worry about is what to shift into the register when we do the shift. 
For circular shifts we take the value we are shifting out. For the logic shifts, we will be shifting in 
0’s. For the arithmetic shifts left, we will be shifting in 0’s, but for shift-right we will shift in the 
previous value of that register (0 causes a 0 to shift in, 1 causes a 1). More generally, we want to 
build the following: 

 



 
Many of the inputs can be connected directly up (D-A, QD-QA, and CLK): 

 
 
So now we just need to figure out the logic from the outer inputs to the 194 inputs and we can 
use a truth table for this: 

Outer  Inner 
S2 S1 S0 Operation LSI RSI s1 s0 CLR 

0 0 0 Hold X X 0 0 0 
0 0 1 Circular shift right QA X 1 0 0 

0 1 0 Circular shift left X QD 0 1 0 
0 1 1 Logical shift right 0 X 1 0 0 

1 0 0 Logical shift left X 0 0 1 0 
1 0 1 Arithmetic shift right QD X 1 0 0 

1 1 0 Arithmetic shift left X 0 0 1 0 
1 1 1 Parallel load X X 1 1 0 

 
CLR is always 0. s1 is just S0 in the outer block. s0 can be minimized with a K-map: 
s0   S2  

S0 
0 1 1 1  

0 0 1 0  

  S1   
This minimizes to: s0 = S2S1 + S2S0’ + S1S0’ 
 
We got LSI and RSI by just looking at what the behavior should be for each of the operations. For 
hold and load we don’t care. For shift lefts we don’t care about LSI and for right shifts we don’t 
care about RSI. For the logical shifts we always shift in 0’s. For the circular shifts we always shift 
from the opposite end (QA for right shift, QD for left shift). Finally, for arithmetic shifts we either 
shift in a 0 for the left shift or the value of the high order bit QD for right shift. 
 
Now, how do we get logic for LSI and RSI. RSI is easier, look at the first four rows when S2=0. We 
have three X’s and QD…let’s assign all the X’s to QD and now we see that when S2=0 then 
RSI=QD. Similarly, looking at the bottom four rows we can set the X’s to 0 and now when S2=1, 
RSI=0. So we can “choose” between QD and 0 for the input to RSI based on S2…this is exactly 
what a MUX does! So we use a 2:1 MUX with S2 as the select bit and QD for the I0 and 0 for I1. 



 
For LSI, we need a 4:1 MUX based on S2 and S1. Notice that row pairs 0/1, 2/3, 4/5, and 6/7 
each have a “don’t care”. Let’s set the “don’t care” to the other value in the pair: QA/QA, 0/0, 
QD/QD, X/X. Now we can choose between these four values based on S2 and S1. Thus we use a 
4:1 MUX with S2/S1 as the input and QA, 0, QD, and 0 as the inputs. 
 
Putting it all together now we get the following circuit: 
 

 
 

4. CLD2e, 7.5 
This question is asking about a 4-bit Johnson counter. We need to go through the sequential 
circuit decision process and show that the resulting circuit is that same as the one in Figure 7.2. 
 
The first step is to draw out the state diagram for the counter: 
 

 
Once we have the state diagram, we can go ahead and draw the state transition table/truth 
table: 

S2

S1

S0

D

C

B

A

CLK

QD

QC

QB

QAA Q A

B Q B

C Q C

C L K

Q D

C L R

D

L S I

R S I

S 0

S 1

universalshift

GND

D0

O

D1

S0

GND

I0

OI1

I2

I3

S
0

S
1

QD

QA

GND

GND
QD

S2
S1

S0

S2

I0

OI1

I2

I0

O

I1

I0

O

I1

I0

O

I1

I0

O

I1

I0

O

I1

S2

S1

S2

S0

S1

S0

0000 1000 1100 1110 

0001 0011 0111 1111 



Current Next 
A B C D A+ B+ C+ D+ 

0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 X X X X 
0 0 1 1 0 0 0 1 

0 1 0 0 X X X X 
0 1 0 1 X X X X 
0 1 1 0 X X X X 
0 1 1 1 0 0 1 1 

1 0 0 0 1 1 0 0 
1 0 0 1 X X X X 
1 0 1 0 X X X X 
1 0 1 1 X X X X 

1 1 0 0 1 1 1 0 
1 1 0 1 X X X X 
1 1 1 0 1 1 1 1 
1 1 1 1 0 1 1 1 

 
Now from this we can go ahead and minimize our next state logic using K-maps. 
 
A+   A  

 1 X 1 1  

 0 X X X 
D 

C 
0 0 0 X 

X X 1 X  

  B   
 
C+   A  

 0 X 1 0  

 0 X X X 
D 

C 
0 1 1 X 

X X 1 X  

  B   
 

Giving us the following minimized functions: 
A+ = D’ 
B+ = A 
C+ = B 
D+ = C 
 
Now from this we can go ahead and implement the circuit using D flip-flops and a tiny bit of 
logic: 
 

B+   A  

 0 X 1 1  

 0 X X X 
D 

C 
0 0 1 X 

X X 1 X  

  B   

D+   A  

 0 X 0 0  

 0 X X X 
D 

C 
1 1 1 X 

X X 1 X  

  B   



 
 
This is the same as Figure 7.2! 
 

5. CLD2e, 7.6 
In 7.5 we made some decisions about how to assign the “don’t cares” and that led us to a simple 
circuit at the end. Let’s see how these decisions for the “don’t care” effect the state diagram. 
This time we will want to draw all 16 potential states that our counter could start out in. The 
first step is to take our truth table from 7.5, but we will take all the values that were don’t cares 
and assigned them as we did in or K-maps. This gives the following truth table: 
 

Current Next 
A B C D A+ B+ C+ D+ 

0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 1 0 0 1 
0 0 1 1 0 0 0 1 

0 1 0 0 1 0 1 0 
0 1 0 1 0 0 1 0 
0 1 1 0 1 0 1 1 
0 1 1 1 0 0 1 1 

1 0 0 0 1 1 0 0 
1 0 0 1 0 1 0 0 
1 0 1 0 1 1 0 1 
1 0 1 1 0 1 0 1 

1 1 0 0 1 1 1 0 
1 1 0 1 0 1 1 0 
1 1 1 0 1 1 1 1 
1 1 1 1 0 1 1 1 

 
Once we have the truth table, we can create the state diagram. This is simply a matter of writing 
out each state and connecting them to the appropriate next state. Here is the result (with all the 
states laid out nicely): 
 

C
L

K

QD

C
L

K

QD

C
L

K

QD

C
L

K

QD

CLK

IO

A B C D



 
 
We can see that this state diagram has two loops, the one we want and the one that would 
result if we started in an invalid state. Therefore, it is not self starting. 
 
To fix this, we need to “break the loop”, our only flexibility is in how we assigned the “don’t 
cares”. To do this we need to look at the un-shaded rows in the truth table and change one of 
the 1’s to 0’s or vice versa so that the next state is a valid counter state. I am going to choose the 
last un-shaded row 1101  0110. I will change the first 0 to a 1, giving 1101  1110. Now I have 
to recalculate the function for A+: 
 
A+   A  

 1 1 1 1  

 0 0 1 0 
D 

C 
0 0 0 0 

1 1 1 1  

  B   
A+ = D + ABC’ 
 
Giving us the following new self-starting state diagram: 
 

0000 1000 1100 1110 

0001 0011 0111 1111 

0010 1001 0100 1010 

0101 1011 0110 1101 



 
 
…And new self-starting circuit: 
 

 
 
 

6. CLD2e, 7.9 
A BCD counter is just a binary counter that goes from 0-9 and then starts back around at 0 again. 
For this problem, it ends up that the book has almost the exact thing that we need. Basically, we 
need a variation on Figure 7.21 “Counter with limit”. This counter works because when it 
reaches the limit value the CLR goes active (0) and so the counter goes back to 0. We can do the 
same thing where we go back to 0, after the output in 9 (1’b1001). This gives the following 
circuit diagram. 
 

C
L

K

QD

C
L

K

QD

C
L

K

QD

C
L

K

QD

CLK

A B C D

I0

O

I1

I0

O I1

I2

0000 1000 1100 1110 

0001 0011 0111 1111 

0010 1001 0100 1010 

0101 1011 0110 1101 



 
 
Notice that I also added logic for the RCO output. This will go high when we are about to go back 
to 0, which is the exact behavior we want. 
 
We can now chain several BCD counters together by noticing that the second counter we only 
want to increment when the first counter goes back to 0. The signal that enables our counter 
tick is T, and so if we hook up the T for the second counter to the RCO of the first, it second 
counter will only tick when RCO is high! Giving the following circuit: 
 

 
This design should generalize to more digits by chaining more of the circuits together. 
 
Note: It is also possible attach the RCO to the CLK input of the next stage. The tradeoff being 
that using T allows each component to have the same synchronized clock. On the other hand, 
using CLK lets you get rid of the enable input to your component. In general, clock inputs should 
only be used for the clock, not for signals! But you may be forced to use the clock though if the 
component you are using doesn’t have an enable input. 

CLK

QD

QC

QB

QA

I O

I O

I0

O

I1

I2

I3

IO

A Q A

B Q B

C Q C

C L K

Q D

C L R

R C O

D

L o ad

P

T

Chip163
VCC

GND

VCC

RCO

VCC

CLK

QD

QC

QB

QA

I O

I O

I0

O

I1

I2

I3

IO

A Q A

B Q B

C Q C

C L K

Q D

C L R

R C O

D

L o ad

P

T

Chip163
VCC

GND

VCC RCO

QD2

QC2

QB2

QA2

I O

I O

I0

O

I1

I2

I3

IO

A Q A

B Q B

C Q C

C L K

Q D

C L R

R C O

D

L o ad

P

T

Chip163
VCC

GND

VCC

VCC

CLK


