
CSE370 HW7 Solutions (Winter 2010) 
 

1. CLD2e, 7.11 
For this we basically have three shift registers, one for each operand (A & B) and one to 
accumulate the sum (S). For this problem we’ll assume we don’t need to worry about stopping 
things after 4 clock cycles once the result is calculated (there is some other counter or state 
machine that knows to read the sum at that point). The first part of the problem asks us to draw 
the circuit diagram for this adder. 
 
We are specifically asked to consider how to deal with the carry-out/carry-in. We need to 
remember the carry-out from the previous 1-bit addition so that we can use it for the next 1-bit 
addition. Therefore, we need a register to hold this value between clock cycles. The resulting 
circuit is shown below: 

 
 
To handle the reset of the machine there are two things we need to do. First, we need to reset 
the carry flip-flop so that we start with no carry. Also, on reset we should do a “parallel load” of 
the A and B operand shift registers to load the initial values that we are adding.  Some people 
had a separate load signal, this is okay. 
 
Note: Some people tried to connect the carry-out connected directly to carry-in w/o a register. 
This won’t necessarily work because the adder is just combinational logic and so the carry-out 
being rerouted into the carry-in could cause a logic loop. E.g. If A,B,Cin = 1,1,0 then S=0 Co=1…but 
Co is Cin so A,B,Cin becomes 1,1,1, so the result becomes S=1, Co=1! 
 
Part (b) of the question asks about the control signals for the adder. For this part it is safe to 
assume that the registers have a “load” input. Also, we assume that the flip-flop has a reset 
input. Therefore when reset goes high we will do the “parallel load” into the A & B shift registers 
and reset the carry flip-flop. 
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To illustrate how things would work we will assume that the A and B operand shift registers 
have the following values at their parallel load inputs: 

A[3:0] = 0101 
B[3:0] = 0111 

 
The following timing diagram shows how the control signals and clock affect the internal values 
in our circuit: 
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Notice that the sum is correctly calculated as 1100 (SA-SD) after four clock cycles (after reset). 
 

2. CLD2e, 7.18 
Let L=3 be the number of state bits 
Let M=2 be the number of input bits 
Let N=6 be the number of output bits 
 
a) # of states – minimum: 8 maximum: 8 

Because we are told that we cannot have any don't cares, we know that every possible 
combination of the registers must represent unique states. This means that there must be 
exactly 2L = 23 = 8 states and so the minimum and maximum number of states is 8. 



Note: A lot of people said 1 was the minimum number of states. This would normally be 
true if we allowed for don’t cares. 
 

b) # of transitions per state – minimum: 4 maximum: 4 
Again, we know that each possible input must correspond to a transition and there are no 
don't cares. Since there are two input bits we know that there must be exactly 2M = 22 = 4 
different transitions from every state. Thus, the minimum and maximum is 4. 
 

c) #of possible paths into a state – minimum: 0 maximum: 32 
There are no restrictions on where the arrows can go so at minimum there can be 0 
transitions into a state. Furthermore, all transitions might go to the same state and so There 
are 2L+M = 25 = 32 transitions maximum into a state. 
 

d) # of unique outputs – minimum: 1 maximum: 32 
There are exactly 6 output bits so this would be 26 or 64 potential outputs; however, the 
output in a Mealy machine is based on the current input and state of which there are only 5 
bits, this means that the maximum outputs can be at most 25 or 32. The exact formula 
would be min(2L+M, 2N) = min(25,26) = 25 = 32. There must be at least one output since the 
output must be some value for every state. 

 
3. CLD2e, 7.26 

a) There are 5 states, a reset state and a state that represents the current value of the input. 
The transitions represent the next value of the input and the output for each transition is 
based on whether the state we are transitioning from and the value of the transition. 

 

 
b) There are 11 states. One state is the reset state so we only really have 10 interesting states. 

You can think of the problem as follows: What information do we need to store to 
determine the output? Well, we could do it if we knew the value of the current number and 
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the value of the previous number. This would create 16 states...however, we actually need 
less information, we really only need to know the current number and whether the previous 
number was >/</= to the current number. This is 4x3 or 12 states...but wait, if the current 
value is 00 then the previous number couldn't have been less than 00, so for 00 we only 
have >/=. Similarly for 11 the previous value couldn't have been >, so we only have </=. 
That’s how we get the 10 states (plus 1 reset state).  
 
This machine has a lot of transitions so I have split up things to make it easier to see the 
various transitions and outputs for each of the states: 

 
The Moore output for each state is as follow: 
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Note: The reason that we need the RST states is because when the machine is first starting 
up there is no previous or current value so we need some state to start in. The output from 
this reset state might be "don't care". We also make the simplifying assumption that the 
first number we get transitions us to the appropriate “=” state. 

 
4. CLD2e, 7.28 

Given the timing for this problem we get the following chart for the lights: 
 

N Red Red Gr  Ye  Green Yellow 

S Red Red Red Red Green Yellow 

E Green Yellow Red Red Red Red 

W Green Yellow Red Red Red Red 

0 45 60 80 90 135 150 
 
This timing gives us exactly 6 potential light configurations. 
 
We can also see that we will need a 45 second time, a 20 second timer, a 15 second timer, and a 
10 second timer. 
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SouthLights[2:0] 
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WestLights[2:0] 
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The inputs are going to be a reset signal, clock signal, and signals for when the timers complete. 
The outputs are going to be signals to reset each timer and whether each light should be on or 
off. 
 
In our Mealy state machine we would have 6 states, one for each configuration and when we 
transition we would reset the appropriate timer for leaving the next state. We will leave a state 
when the appropriate timer expires (which was reset when we transitioned into this state). 
 
I would probably use an output encoding for the states of the form: 

state = {NorthLights[4:0], SouthLights[2:0], EastLights[2:0], WestLights[2:0]} 
This makes it so we don’t need any logic for the output. 
 

5. CLD2e, 8.18 
First, notice that this is a Moore machine since the output is based solely on the state. Also, 
notice that we need three flip-flops because the states are encoded as three bits. 

 
From the state diagram we can see that the state transition table is encoded as follows: 
 
State S I S+ O 

A 
0 0 0 0 0 0 0 0 

0 0 0 1 0 0 1 0 

B 
0 0 1 0 0 1 1 0 

0 0 1 1 0 0 1 0 

 0 1 0 0 X X X X 
 0 1 0 1 X X X X 

C 
0 1 1 0 0 0 0 0 

0 1 1 1 1 1 1 0 

 1 0 0 0 X X X X 
 1 0 0 1 X X X X 

E 
1 0 1 0 0 0 0 1 

1 0 1 1 1 1 1 1 

 1 1 0 0 X X X X 
 1 1 0 1 X X X X 

D 
1 1 1 0 1 0 1 0 

1 1 1 1 0 0 1 0 
 
 
 
 
 
 
 
 
 
 
 
 



This gives the following K-maps: 
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Notice that the problem asked us to use the fewest gates possible. To do this we need to use as 
many duplicate terms amongst the equations as possible. I have done that above and have a 
total of 5 terms to computer S+ and one more term for the output (O). 
 
Our equations are as follows: 
S2

+ = S2’S1I + S2S1’I + S2S1I’ 
S1

+ = S2’S1I + S2S1’I + S2’S1’S0I’ 
S0

+ = S2S1I’ + S2’S1’S0I’ + I 
 
O = S2S1’ 

 
Note: A lot of people minimized each K-map independently and thus ended up with more total 
terms and thus more logic. 
 
We can then map the equations to the following circuit: 
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I have chosen to handle the reset signal by using flip-flops with a reset input. If our flip-flops do 
not have a reset input, then we can add an AND-gate to the input of each flip-flop such that the 
new value becomes: 

 SX
++ = SX

+ & !Reset   (for X = 0..2) 
 
 

6. CLD2e, 8.23 
This problem is asking you to make the state machine robust to missing the output TS in state 
T04. This could happen for many reasons in real hardware that we won’t go into here. But 
basically we want to make our machine robust to this type of error.  
 
The fix is really simple. We just have all states T04-T19 output TS, not just T04. This change doesn't 
add any states or transitions to either diagram. Now even if we miss TS for a while we will 
eventually get it and transition out of the state and reset the timer. 

 
Note: People had other solutions to this. One set of solutions involved additional signals to 
communicate back and forth between the two state machines. This adds to the complexity of 
the solution and the second state machine no longer is just a simple counter. 
 
Note: Another set of solutions made TS output high for several states (e.g. T04 and T05), but this 
has the drawback of not being robust is TS is lost several times in a row. 
 
Note: A final set of solutions had TS high again in T19 or changed the transition out of the yellow 
light state to be on TS or TL. These will prevent the problem but have the downside that if the 
first TS is missed we will have to wait at least another 14 cycles before we transition. 
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