
CSE370 HW7 Solutions (Winter 2010)

1. CLD2e, 7.11
For this we basically have three shift registers, one for each operand (A & B) and one to
accumulate the sum (S). For this problem we’ll assume we don’t need to worry about stopping
things after 4 clock cycles once the result is calculated (there is some other counter or state
machine that knows to read the sum at that point). The first part of the problem asks us to draw
the circuit diagram for this adder.

We are specifically asked to consider how to deal with the carry-out/carry-in. We need to
remember the carry-out from the previous 1-bit addition so that we can use it for the next 1-bit
addition. Therefore, we need a register to hold this value between clock cycles. The resulting
circuit is shown below:

To handle the reset of the machine there are two things we need to do. First, we need to reset
the carry flip-flop so that we start with no carry. Also, on reset we should do a “parallel load” of
the A and B operand shift registers to load the initial values that we are adding. Some people
had a separate load signal, this is okay.

Note: Some people tried to connect the carry-out connected directly to carry-in w/o a register.
This won’t necessarily work because the adder is just combinational logic and so the carry-out
being rerouted into the carry-in could cause a logic loop. E.g. If A,B,Cin = 1,1,0 then S=0 Co=1…but
Co is Cin so A,B,Cin becomes 1,1,1, so the result becomes S=1, Co=1!

Part (b) of the question asks about the control signals for the adder. For this part it is safe to
assume that the registers have a “load” input. Also, we assume that the flip-flop has a reset
input. Therefore when reset goes high we will do the “parallel load” into the A & B shift registers
and reset the carry flip-flop.

A S

B

C outC in

adder_1bit

DQ

C lr

C
L

K

D_Flip_Flop

Ld

Q
A

C lr

Q
BC LK

Q
C

A

Q
D

B C DS
in

Shift_Register

Ld

Q
A

C lr

Q
BC LK

Q
C

A

Q
D

B C DS
in Shift_Register

Ld

Q
A

C lr

Q
BC LK

Q
C

A

Q
D

B C DS
in

Shift_Register

CLK

Reset

B(3:0)

A(3:0) A[3]A[2]A[1]A[0]

GND

GND

Sum[3]

Sum[2]

Sum[1]

Sum[0]

Sum(3:0)

GND

GND

GND

GND

B[3]B[2]B[1]B[0]

To illustrate how things would work we will assume that the A and B operand shift registers
have the following values at their parallel load inputs:

A[3:0] = 0101
B[3:0] = 0111

The following timing diagram shows how the control signals and clock affect the internal values
in our circuit:

CLK

Reset

A_QD

B_QD

Cin

Sum

Co

SA

SB

SC

SD

Notice that the sum is correctly calculated as 1100 (SA-SD) after four clock cycles (after reset).

2. CLD2e, 7.18
Let L=3 be the number of state bits
Let M=2 be the number of input bits
Let N=6 be the number of output bits

a) # of states – minimum: 8 maximum: 8

Because we are told that we cannot have any don't cares, we know that every possible
combination of the registers must represent unique states. This means that there must be
exactly 2L = 23 = 8 states and so the minimum and maximum number of states is 8.

Note: A lot of people said 1 was the minimum number of states. This would normally be
true if we allowed for don’t cares.

b) # of transitions per state – minimum: 4 maximum: 4
Again, we know that each possible input must correspond to a transition and there are no
don't cares. Since there are two input bits we know that there must be exactly 2M = 22 = 4
different transitions from every state. Thus, the minimum and maximum is 4.

c) #of possible paths into a state – minimum: 0 maximum: 32
There are no restrictions on where the arrows can go so at minimum there can be 0
transitions into a state. Furthermore, all transitions might go to the same state and so There
are 2L+M = 25 = 32 transitions maximum into a state.

d) # of unique outputs – minimum: 1 maximum: 32
There are exactly 6 output bits so this would be 26 or 64 potential outputs; however, the
output in a Mealy machine is based on the current input and state of which there are only 5
bits, this means that the maximum outputs can be at most 25 or 32. The exact formula
would be min(2L+M, 2N) = min(25,26) = 25 = 32. There must be at least one output since the
output must be some value for every state.

3. CLD2e, 7.26

a) There are 5 states, a reset state and a state that represents the current value of the input.
The transitions represent the next value of the input and the output for each transition is
based on whether the state we are transitioning from and the value of the transition.

b) There are 11 states. One state is the reset state so we only really have 10 interesting states.

You can think of the problem as follows: What information do we need to store to
determine the output? Well, we could do it if we knew the value of the current number and

10 11

00 01

RST 00/[XX] 01/[XX]

11/[XX] 10/[XX]

01/[01]

00/[10]

11/[01]

11/[00]

01/[00]

10/[00]

00/[00]

11/[01]

11/[01]

10/[01]

10/[01]

01/[10]

00/[10]

01/[10]

10/[10]

00/[10] Output of the form:

[Z2Z1]

the value of the previous number. This would create 16 states...however, we actually need
less information, we really only need to know the current number and whether the previous
number was >/</= to the current number. This is 4x3 or 12 states...but wait, if the current
value is 00 then the previous number couldn't have been less than 00, so for 00 we only
have >/=. Similarly for 11 the previous value couldn't have been >, so we only have </=.
That’s how we get the 10 states (plus 1 reset state).

This machine has a lot of transitions so I have split up things to make it easier to see the
various transitions and outputs for each of the states:

The Moore output for each state is as follow:

11/< 11/=

10/< 10/= 10/>

01/< 01/= 01/>

00/= 00/>

11/< 11/=

10/< 10/= 10/>

01/< 01/= 01/>

00/= 00/>

11/< 11/=

10/< 10/= 10/>

01/< 01/= 01/>

00/= 00/>

11/< 11/=

10/< 10/= 10/>

01/< 01/= 01/>

00/= 00/>

11

11

11 11

10

10

10

10

01

01

01

01

00

00

00

00

00

00

00
00

01

01

01

01

10

10

10

10 11

11

11

11

11

11

10

10

01

01

00 00

RST RST

RST RST

00

01

10 11

Note: The reason that we need the RST states is because when the machine is first starting
up there is no previous or current value so we need some state to start in. The output from
this reset state might be "don't care". We also make the simplifying assumption that the
first number we get transitions us to the appropriate “=” state.

4. CLD2e, 7.28

Given the timing for this problem we get the following chart for the lights:

N Red Red Gr Ye Green Yellow

S Red Red Red Red Green Yellow

E Green Yellow Red Red Red Red

W Green Yellow Red Red Red Red

0 45 60 80 90 135 150

This timing gives us exactly 6 potential light configurations.

We can also see that we will need a 45 second time, a 20 second timer, a 15 second timer, and a
10 second timer.

Inputs Outputs

Timer45Done,
Timer20Done,
Timer15Done,
Timer10Done,
Reset,
Clock

ResetTimer45,
Reset Timer20,
ResetTimer15,
ResetTimer10,
NorthLights[4:0]
SouthLights[2:0]
EastLights[2:0]
WestLights[2:0]

11/< 11/=

10/< 10/= 10/>

01/< 01/= 01/>

00/= 00/> RST

[XX] [00]

[00]

[00]

[00]

[01]

[01]

[01]

[10]

[10]

[10]

Output of the form: [Z2Z1]

The inputs are going to be a reset signal, clock signal, and signals for when the timers complete.
The outputs are going to be signals to reset each timer and whether each light should be on or
off.

In our Mealy state machine we would have 6 states, one for each configuration and when we
transition we would reset the appropriate timer for leaving the next state. We will leave a state
when the appropriate timer expires (which was reset when we transitioned into this state).

I would probably use an output encoding for the states of the form:

state = {NorthLights[4:0], SouthLights[2:0], EastLights[2:0], WestLights[2:0]}
This makes it so we don’t need any logic for the output.

5. CLD2e, 8.18
First, notice that this is a Moore machine since the output is based solely on the state. Also,
notice that we need three flip-flops because the states are encoded as three bits.

From the state diagram we can see that the state transition table is encoded as follows:

State S I S+ O

A
0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

B
0 0 1 0 0 1 1 0

0 0 1 1 0 0 1 0

 0 1 0 0 X X X X
 0 1 0 1 X X X X

C
0 1 1 0 0 0 0 0

0 1 1 1 1 1 1 0

 1 0 0 0 X X X X
 1 0 0 1 X X X X

E
1 0 1 0 0 0 0 1

1 0 1 1 1 1 1 1

 1 1 0 0 X X X X
 1 1 0 1 X X X X

D
1 1 1 0 1 0 1 0

1 1 1 1 0 0 1 0

This gives the following K-maps:

S2

+ S2

 0 X X X

 0 X X X
I

S0
0 1 0 1

0 0 1 0

 S1

S0

+ S2

 0 X X X

 1 X X X
I

S0
1 1 1 1

1 0 1 0

 S1

Notice that the problem asked us to use the fewest gates possible. To do this we need to use as
many duplicate terms amongst the equations as possible. I have done that above and have a
total of 5 terms to computer S+ and one more term for the output (O).

Our equations are as follows:
S2

+ = S2’S1I + S2S1’I + S2S1I’
S1

+ = S2’S1I + S2S1’I + S2’S1’S0I’
S0

+ = S2S1I’ + S2’S1’S0I’ + I

O = S2S1’

Note: A lot of people minimized each K-map independently and thus ended up with more total
terms and thus more logic.

We can then map the equations to the following circuit:

S1
+ S2

 0 X X X

 0 X X X
I

S0
0 1 0 1

1 0 0 0

 S1

O S2

 0 X X X

 0 X X X
I

S0
0 0 0 1

0 0 0 1

 S1

I have chosen to handle the reset signal by using flip-flops with a reset input. If our flip-flops do
not have a reset input, then we can add an AND-gate to the input of each flip-flop such that the
new value becomes:

 SX
++ = SX

+ & !Reset (for X = 0..2)

6. CLD2e, 8.23
This problem is asking you to make the state machine robust to missing the output TS in state
T04. This could happen for many reasons in real hardware that we won’t go into here. But
basically we want to make our machine robust to this type of error.

The fix is really simple. We just have all states T04-T19 output TS, not just T04. This change doesn't
add any states or transitions to either diagram. Now even if we miss TS for a while we will
eventually get it and transition out of the state and reset the timer.

Note: People had other solutions to this. One set of solutions involved additional signals to
communicate back and forth between the two state machines. This adds to the complexity of
the solution and the second state machine no longer is just a simple counter.

Note: Another set of solutions made TS output high for several states (e.g. T04 and T05), but this
has the drawback of not being robust is TS is lost several times in a row.

Note: A final set of solutions had TS high again in T19 or changed the transition out of the yellow
light state to be on TS or TL. These will prevent the problem but have the downside that if the
first TS is missed we will have to wait at least another 14 cycles before we transition.

D Q

C lr

C
L

K

D Q

C lr

C
L

K

D Q

C lr

C
L

K

C
L
K

R
e
s
e
t

I0

OI1

I2

I0

OI1

I2

I0

OI1

I2

S0

S1

S2

I0

O

I1

O

I

I0

OI1

I2

I0

OI1

I2

I0

O

I1

I2

I3

I0

OI1

I2

I

S1

S2

S0

S2

S1

I

S1

I

S2

S2

I

S1

