Combinational logic

- Switches
- Basic logic and truth tables
- Logic functions
- Boolean algebra
- Proofs by re-writing and by perfect induction

Switches: basic element of physical implementations

- Implementing a simple circuit (arrow shows action if wire changes to "1"):

close switch (if A is " 1 " or asserted) and turn on light bulb (Z)
open switch (if A is " 0 " or unasserted) and turn off light bulb (Z)

$$
Z \equiv A
$$

Switches (cont'd)

- Compose switches into more complex ones (Boolean functions):

$Z \equiv A$ or B

Switching networks

- Switch settings
- determine whether or not a conducting path exists to light the light bulb
- To build larger computations
- use the light bulb (output of the network) to set other switches (inputs to another network)

Transistor networks

- Modern digital systems are designed in CMOS technology
- MOS stands for Metal-Oxide on Semiconductor
- C is for complementary because there are both normally-open and normally-closed switches
- MOS transistors act as voltage-controlled switches - similar, though easier to work with than relays.

MOS transistors

- MOS transistors have three terminals: drain, gate, and source
- they act as switches in the following way:
if the voltage on the gate terminal is (some amount) higher/lower than the source terminal then a conducting path will be established between the drain and source terminals

open when voltage at G is low
closes when:
voltage $(\mathrm{G})>$ voltage $(\mathrm{S})+\varepsilon$

closed when voltage at G is low opens when: voltage(G) < voltage (S) $-\varepsilon$

Most digital logic is CMOS

Multi-input logic gates

- CMOS logic gates are inverting
- Easy to implement NAND, NOR, NOT while AND, OR, and Buffer are harder

Claude Shannon - 1938

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
- in general, there are $2^{* *}\left(2^{* *} n\right)$ functions of n inputs

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
- For example, implementing X and Y
is the same as implementing not (X nand Y)
- In fact, we can do it with only NOR or only NAND
- NOT is just a NAND or a NOR with both inputs tied together

- and NAND and NOR are "duals", that is, its easy to implement one using the other

$$
\begin{array}{ll}
X \underline{\operatorname{nand}} Y & \equiv \operatorname{not}((\operatorname{not} X) \underline{n o r}(\operatorname{not} Y)) \\
X \underline{\operatorname{nor} Y} & \equiv \operatorname{not}((\operatorname{not} X) \text { nand }(\operatorname{not} Y))
\end{array}
$$

Boolean algebra

- An algebraic structure consists of
- a set of elements B
- binary operations $\{+, \bullet\}$

George Boole - 1854

- and a unary operation $\{$ ' $\}$
- such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. commutativity: $\quad a+b=b+a$
3. associativity:
4. identity:
5. distributivity: $\quad a+(b \cdot c)=(a+b) \cdot(a+c)$
6. complementarity:
$a+(b+c)=(a+b)+c$
$a+0=a$
$a+a^{\prime}=1$
$a \cdot b$ is in B
$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a \cdot 1=a$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot a^{\prime}=0$

Logic functions and Boolean algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •
X, Y are Boolean algebra variables

Boolean expression that is true when the variables X and Y have the same value and false, otherwise $3 / 43 / 4$

Axioms and theorems of Boolean algebra

- identity

1. $x+0=x \quad$ 1D. $x \cdot 1=x$

- null

2. $X+1=1$

- idempotency:

3. $X+X=X \quad$ 3D. $X \cdot X=X$

- involution:

4. $\left(X^{\prime}\right)^{\prime}=X$

- complementarity:

5. $X+X^{\prime}=1$

5D. $X \cdot X^{\prime}=0$

- commutativity:

6. $X+Y=Y+X$ 6D. $X \cdot Y=Y \cdot X$

- associativity:

7. $(X+Y)+Z=X+(Y+Z) \quad 7 D .(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$

- distributivity:

8. $X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z) 8 D . \quad X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$

Axioms and theorems of Boolean algebra (cont'd)

- uniting:

9. $X \cdot Y+X \cdot Y^{\prime}=X \quad$ 9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$

- absorption:

10. $X+X \cdot Y=X$

10D. $X \cdot(X+Y)=X$
11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$

11D. $\left(X \cdot Y^{\prime}\right)+Y=X+Y$

- factoring:

12. $(X+Y) \cdot\left(X^{\prime}+Z\right)=$ $X \cdot Z+X^{\prime} \cdot Y$

12D. $X \cdot Y+X \cdot Z=$
$(X+Z) \cdot\left(X^{\prime}+Y\right)$

- concensus:

13. $(X \cdot Y)+(Y \cdot Z)+(X \cdot Z)=13 D .(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$ $X \cdot Y+X \cdot Z$ $(X+Y) \cdot(X+Z)$

- de Morgan's:

14. $(X+Y+\ldots)^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot \ldots \quad$ 14D. $(X \cdot Y \cdot \ldots)^{\prime}=X^{\prime}+Y^{\prime}+\ldots$

- generalized de Morgan's:

15. $\mathrm{f}^{\prime}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}, 0,1,+, \cdot\right)=\mathrm{f}\left(\mathrm{X}_{1}^{\prime}, \mathrm{X}_{2}{ }^{\prime}, \ldots, \mathrm{X}_{n}{ }^{\prime}, 1,0, \bullet,+\right)$

Axioms and theorems of Boolean algebra

 (cont'd)- Duality
- a dual of a Boolean expression is derived by replacing \bullet by,++ by $\bullet, 0$ by 1 , and 1 by 0 , and leaving variables unchanged
- any theorem that can be proven is thus also proven for its dual!
- a meta-theorem (a theorem about theorems)
- duality:

16. $X+Y+\ldots \Leftrightarrow X \bullet Y \bullet \ldots$

- generalized duality:

17. $f\left(X_{1}, X_{2}, \ldots, X_{n}, 0,1,+, \bullet\right) \Leftrightarrow f\left(X_{1}, X_{2}, \ldots, X_{n}, 1,0, \bullet,+\right)$

- Different than deMorgan's Law
- this is a statement about theorems
- this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

- Using the laws of Boolean algebra:
- e.g., prove the theorem: $X \cdot Y+X \cdot Y^{\prime}=X$
distributivity (8)
complementarity (5)
$X \cdot Y+X \cdot Y^{\prime}=X \cdot\left(Y+Y^{\prime}\right)$
identity (1D)
$X \cdot\left(Y+Y^{\prime}\right)=X \cdot(1)$
$X \cdot(1)=X$
- e.g., prove the theorem:
$X+X \cdot Y=X$
identity (1D)
distributivity (8)
identity (2)
identity (1D)
$X+X \cdot Y=X \cdot 1+X \cdot Y$
$X \cdot 1+X \cdot Y=X \cdot(1+Y)$
$X \cdot(1+Y) \quad=X \cdot(1)$
$X \cdot(1)=X$

Activity

- Prove consensus theorem using the laws of Boolean algebra:
- $(X \cdot Y)+(Y \cdot Z)+(X \cdot Z)=X \cdot Y+X^{\prime} \cdot Z$
identity complementarity distributivity
commutativity factoring null identity
$(X \cdot Y)+(Y \cdot Z)+(X \cdot Z)$
$(X \cdot Y)+(1) \cdot(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)$
$(X \cdot Y)+\left(X^{\prime}+X\right) \cdot(Y \cdot Z)+\left(X^{\prime} \cdot Z\right)$
$(X \cdot Y)+\left(X^{\prime} \cdot Y \cdot Z\right)+(X \cdot Y \cdot Z)+\left(X^{\prime} \cdot Z\right)$
$(X \cdot Y)+(X \cdot Y \cdot Z)+\left(X^{\prime} \cdot Y \cdot Z\right)+\left(X^{\prime} \cdot Z\right)$
$(X \cdot Y) \cdot(1+Z)+(X \cdot Z) \cdot(1+Y)$
$(X \cdot Y) \cdot(1)+(X \cdot Z) \cdot(1)$
$(X \cdot Y)+(X \cdot Z)$
identity
null
complementarity:
commutativity:
associativity:
distributivity:
factoring:

Winter 2010

```
1. X+0=X
X+X'=1
6. X+Y=Y+X 
(X+Y)+Z=X+(Y+Z)
8. X•(Y+Z)=(X•Y)+(X Z)
```



```
1D. \(X \cdot 1=x\)
2D. \(X \cdot 0=0\)
5D.
5D. \(x \cdot x=0\)
6D. \(X \cdot Y=Y \cdot X\)
6D. \(\quad X \cdot Y=Y \cdot X\)
7D. \((X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)\)
7D. \(\quad(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)\)
8D. \(X+(Y \cdot Z)=(X+Y) \cdot(X+Z)\)
8D. \(X+(Y \cdot Z)=(X+Y) \cdot(X+Z)\)
12D. \(X \cdot Y+X^{\prime} \cdot Z=(X+Z) \cdot\left(X^{\prime}+Y\right)\)
```

Proving theorems (perfect induction)

- Using perfect induction (complete truth table):
- e.g., de Morgan's:
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$
NOR is equivalent to AND with inputs complemented
$(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}$
NAND is equivalent to OR with inputs complemented

X	Y	X^{\prime}	Y^{\prime}	$(X \cdot Y)^{\prime}$	$X^{\prime}+Y^{\prime}$
0	0	1	1		
0	1	1	0		
1	0	0	1		
1	1	0	0		

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

A	B	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$S=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n n^{\prime}+A B^{\prime} C i n '+A B C i n$ Cout $=A^{\prime} B C$ in $+A B^{\prime}$ Cin $+A B C i n '+A B C i n$

