Realizing Boolean logic

- Algebraic expressions to gates
- Mapping between different gates
- Discrete logic gate components (used in lab 1)

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

			Cin	Cout
A	B	Cin	0	0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$S=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n '+A B^{\prime} C i n '+A B C i n$
Cout $=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify expressions - e.g., full adder's carry-out function

$$
\text { Cout }=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n
$$

$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n+A B C i n$
$=A^{\prime} B C i n+A B C i n+A B B^{\prime} C i n+A B C i n '+A B C i n$
$=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n$
= (1) B Cin $+A B^{\prime} C i n+A B C i n '+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n \prime+A B C i n$
$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n \prime+A B C i n$
$=B C i n+A(1) C i n+A B C i n '+A B C i n$
$=B C i n+A C i n+A B\left(C i n^{\prime}+C i n\right)$
$=B C i n+A C i n+A B(1)$
$=B C i n+A C i n+A B$
adding extra terms creates new factoring opportunities
Winter 2010

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

			Cin	Cout
A	B	Cin		
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Cout $=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB}$
$S=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n \prime+A B^{\prime} C i n '+A B C i n$
$=A^{\prime}\left(B^{\prime} \operatorname{Cin}+B C i n \prime\right)+A\left(B^{\prime} C i n '+B C i n\right)$
$=A^{\prime} Z+A Z$
$=A \operatorname{xor} Z=A \operatorname{xor}(B \operatorname{xor} C i n)$

From Boolean expressions to logic gates

- NOT $X^{\prime} \quad \bar{X} \quad \sim \quad X / \quad X+-\quad Y \quad$| X | Y |
| :--- | :--- | :--- | :--- |
| 0 | 1 |
| 1 | 0 |
- AND $X \cdot Y \quad X Y \quad X \wedge Y \quad$| | X | Y | Z |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | 0 | 0 |
| 0 | 1 | 0 | |
| 1 | 0 | 0 | |
| 1 | 1 | 1 | |
- OR $\quad X+Y \quad X \vee Y$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

From Boolean expressions to logic gates (contd)

- WAND

- NOR

- XOR $X \oplus Y$

X xor $Y=X Y^{\prime}+X^{\prime} Y$ X or Y but not both ("inequality", "difference")
- XNOR $X=Y$

X nor $Y=X Y+X^{\prime} Y^{\prime}$ X and Y are the same ("equality", "coincidence")

Full adder: Carry-out

Before Boolean minimization
Cout $=\mathrm{A}^{\prime} \mathrm{BCin}+\mathrm{AB}^{\prime} \mathrm{Cin}^{\prime}$
$+A B C i n '+A B C i n$

After Boolean minimization
Cout $=\mathrm{BCin}+\mathrm{ACin}+\mathrm{AB}$

Full adder: Sum

Before Boolean minimization
Sum $=A^{\prime} B^{\prime} C i n+A^{\prime} B C i n '$
$+A B^{\prime} \mathrm{Cin}^{\prime}+\mathrm{ABCin}$

After Boolean minimization Sum $=(A \oplus B) \oplus$ Cin

Preview: A 2-bit ripple-carry adder

Mapping truth tables to logic gates

$$
\begin{aligned}
& \begin{array}{lll|l}
\text { A } & \text { B } & \text { C } & F \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array} \\
& \text { (2) } \begin{aligned}
F & =A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A \\
& =A^{\prime} B\left(C^{\prime}+C\right)+A C\left(B^{\prime}+B\right)
\end{aligned} \\
& =A^{\prime} B+A C
\end{aligned}
$$

Conversion between gate types

- Example: map AND/OR network to NOR-only network

Winter 2010

Conversion between gate types (cont'd)

- Example: verify equivalence of two forms

$$
\left.\left.\begin{array}{rlrl}
Z & =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right.
\end{array}\right\}^{\prime}\right)
$$

Activity: convert to NAND gates

Example: tally circuit (outputs \# of 1 s in inputs)

X1	X2	X3	T2	T1
$\mathbf{0}$	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
& \mathrm{T} 1=\mathrm{X1} 1^{\prime} \mathrm{X} 2^{\prime} \mathrm{X} 3+\mathrm{X1} 1^{\prime} \mathrm{X} 2 \times 3^{\prime} \\
& \text { + X1 X2' X3' + X1 X2 X3 } \\
& =\left(X 1^{\prime} \mathrm{X}^{\prime}+\mathrm{X} 1 \mathrm{X} 2\right) \mathrm{X} 3 \\
& +\left(X 1^{\prime} X 2+X 1 X 2^{\prime}\right) X 3^{\prime} \\
& =(\mathrm{X} 1 \text { xor } \mathrm{X} 2)^{\prime} \mathrm{X} 3 \\
& +(X 1 \text { xor X2) X3' } \\
& =(\mathrm{X} 1 \text { xor } \mathrm{X} 2) \text { xor } \mathrm{X} 3 \\
& \mathrm{~T} 2=\mathrm{X} 1^{\prime} \mathrm{X} 2 \mathrm{X} 3+\mathrm{X} 1 \mathrm{X} 2^{\prime} \mathrm{X} 3 \\
& +\mathrm{X1} \mathrm{X2} \mathrm{X3'}+\mathrm{X1} \mathrm{X2} \mathrm{X3} \\
& =X 1{ }^{\prime}(X 2 X 3)+X 1(X 2+X 3)
\end{aligned}
$$

From Boolean expressions to logic gates

- More than one way to map expressions to gates
- e.g., $Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(B^{\prime} \cdot(C+D)\right)\right)$

Waveform view of logic functions

- Just a sideways truth table
- but note how edges don't line up exactly
- it takes time for a gate to switch its output!

Choosing different realizations of a function

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
- delays are different
- glitches (hazards) may arise - these could be bad, it depends
- variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent

Which realization is best?

- Reduce number of inputs
- literal: input variable (complemented or not)
- can approximate cost of logic gate as 2 transistors per literal
- why not count inverters?
- fewer literals means less transistors
- smaller circuits
- fewer inputs implies faster gates
- gates are smaller and thus also faster
- fan-ins (\# of gate inputs) are limited in some technologies
- the programmable logic we'll be using later in the quarter
- Reduce number of gates
- fewer gates (and the packages they come in) means smaller circuits
- directly influences manufacturing costs

Which realization is best? (cont'd)

- Reduce number of levels of gates
- fewer level of gates implies reduced signal propagation delays
- minimum delay configuration typically requires more gates - wider, less deep circuits
- Hazards/glitches
- one without hazards may be preferable/necessary
- How do we explore tradeoffs between increased circuit delay and size?
- automated tools to generate different solutions
- logic minimization: reduce number of gates and complexity
- logic optimization: reduction while trading off against delay

Random logic gates

- Transistors quickly integrated into logic gates (1960s)
- Catalog of common gates (1970s)
- Texas Instruments Logic Data Book - the yellow "bible"
- all common packages listed and characterized (delays, power)
- typical packages:
- in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
- Today, very few of these parts are still in use
- However, parts libraries exist for chip design
- designers reuse already characterized logic gates on chips
- same reasons as before
- difference is that the parts don't exist in physical inventory created as needed

Some logic gate components

Quad 2-input NANDs - ‘00

6 inverters (NOTs) - ‘04

Quad 2-input NORs - ‘02

3 3-input NANDs - ‘10

