Realizing Boolean logic

- Algebraic expressions to gates
- Mapping between different gates
- Discrete logic gate components (used in lab 1)

Winter 2010

CSE370 - III - Realizing Boolean Logic

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

<i>(</i>	}	Co	ut C	in ∐√	\mathcal{L}	1
	A B	A B	A B	A B	A B	
	S	S	S	S	S	

Α	В	Cin	Cout	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

Winter 2010

CSE370 - III - Realizing Boolean Logic

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify expressions
 - e.g., full adder's carry-out function

```
Cout
             = A' B Cin + A B' Cin + A B Cin' + A B Cin
             = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
             = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
             = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin
             = (1) B Cin + A B' Cin + A B Cin' + A B Cin
              = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
              = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
              = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
              = B Cin + A (1) Cin + A B Cin' + A B Cin
              = B Cin + A Cin + A B (Cin' + Cin)
              = B Cin + A Cin + A B (1)
                                                       adding extra terms
              = B Cin + A Cin + A B
                                                      creates new factoring
                                                          opportunities
Winter 2010
                          CSE370 - III - Realizing Boolean Logic
```

A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

f	}	Co	ut C	in }√	7	ì
	A B	A B	A B	A B	A B	
	S	S	S	S	S	

В	Cin	Cout	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0	0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1

$$\begin{array}{c} A \\ B \\ \hline \\ Cin \end{array} \longrightarrow \begin{array}{c} S \\ \hline \\ \end{array} \longrightarrow \begin{array}{c} Cout \\ \end{array}$$

$$Cout = B Cin + A Cin + A B$$

$$S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin$$

= $A' (B' Cin + B Cin') + A (B' Cin' + B Cin)$
= $A' Z + A Z'$
= $A xor Z = A xor (B xor Cin)$

Winter 2010

CSE370 - III - Realizing Boolean Logic

From Boolean expressions to logic gates

Winter 2010

CSE370 - III - Realizing Boolean Logic

From Boolean expressions to logic gates (cont'd)

NOR

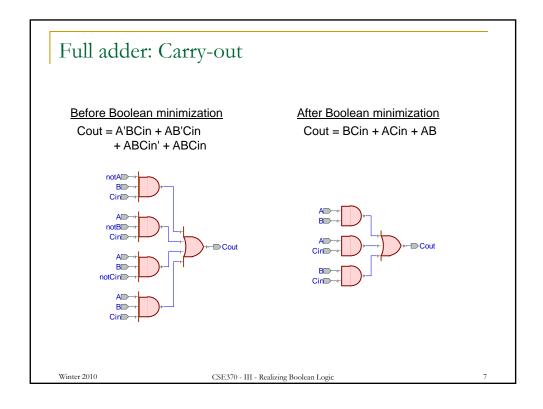
XOR X ⊕ Y

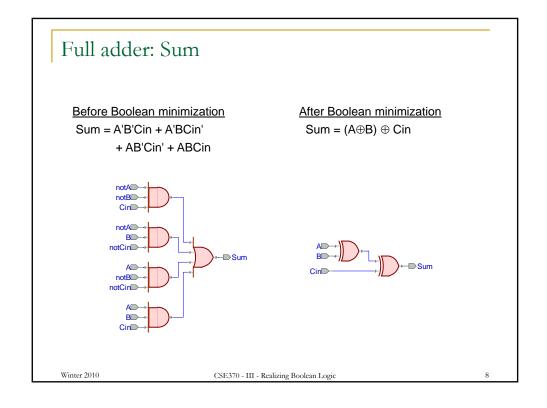
XNOR X = Y

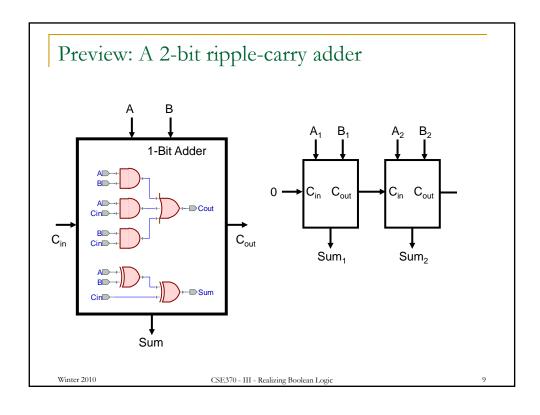
X xnor Y = X Y + X' Y' X and Y are the same ("equality", "coincidence")

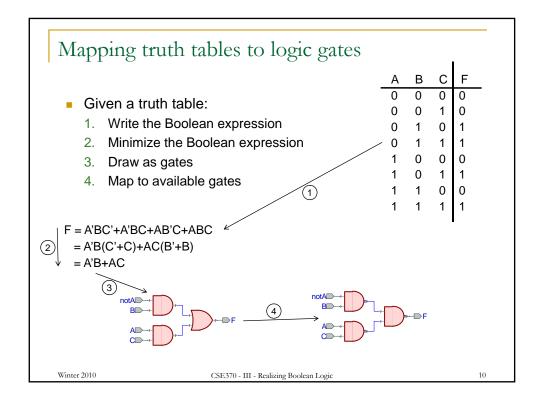
Winter 2010

CSE370 - III - Realizing Boolean Logic



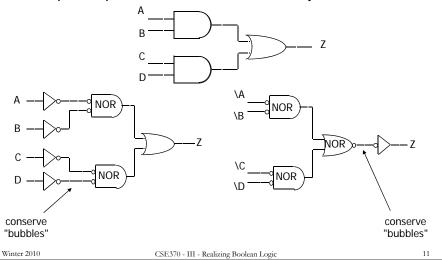






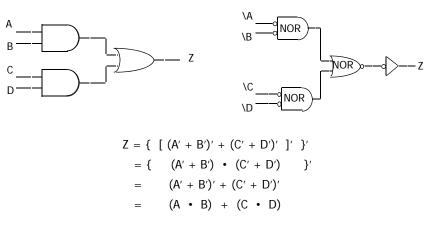
Conversion between gate types

Example: map AND/OR network to NOR-only network



Conversion between gate types (cont'd)

Example: verify equivalence of two forms



Winter 2010

CSE370 - III - Realizing Boolean Logic

Activity: convert to NAND gates Activity: convert to NAND gates Activity: convert to NAND gates Activity: convert to NAND gates

Example: tally circuit (outputs # of 1s in inputs)

X1	X2	Х3	T2	T1	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	T1 = X1' X2' X3 + X1' X2 X3'
0	1	1	1	0	+ X1 X2' X3' + X1 X2 X3
1	0	0	0	1	
1	0	1	1	0	= (X1' X2' + X1 X2) X3
1	1	0	1	0	+ (X1' X2 + X1 X2') X3'
1	1	1	1	1	= (X1 xor X2)' X3 + (X1 xor X2) X3' = (X1 xor X2) xor X3
					T2 = X1' X2 X3 + X1 X2' X3
					+ X1 X2 X3' + X1 X2 X3
					= X1' (X2 X3) + X1 (X2 +

From Boolean expressions to logic gates

More than one way to map expressions to gates

$$\circ$$
 e.g., $Z = A' \bullet B' \bullet (C + D) = (A' \bullet (B' \bullet (C + D)))$

use of 3-input gate

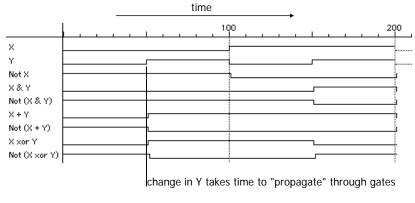
Winter 2010

CSE370 - III - Realizing Boolean Logic

15

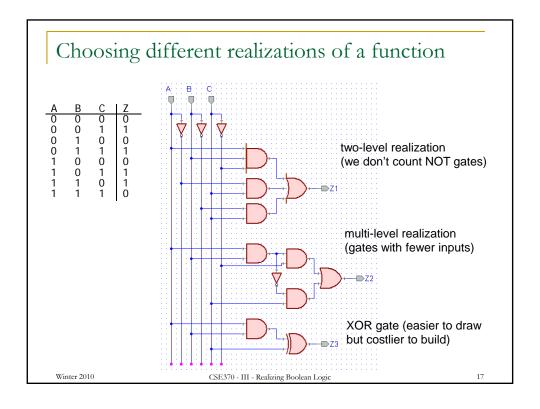
Waveform view of logic functions

- Just a sideways truth table
 - but note how edges don't line up exactly
 - it takes time for a gate to switch its output!



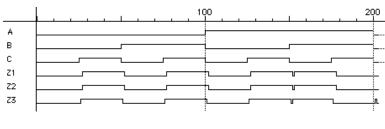
Winter 2010

CSE370 - III - Realizing Boolean Logic



Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - □ glitches (hazards) may arise these could be bad, it depends
 - variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent



Winter 2010 CSE370 - III - Realizing

Which realization is best?

- Reduce number of inputs
 - literal: input variable (complemented or not)
 - can approximate cost of logic gate as 2 transistors per literal
 - why not count inverters?
 - fewer literals means less transistors
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - fan-ins (# of gate inputs) are limited in some technologies
 - the programmable logic we'll be using later in the quarter
- Reduce number of gates
 - fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs

Winter 2010

CSE370 - III - Realizing Boolean Logic

19

Which realization is best? (cont'd)

- Reduce number of levels of gates
 - fewer level of gates implies reduced signal propagation delays
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- Hazards/glitches
 - one without hazards may be preferable/necessary
- How do we explore tradeoffs between increased circuit delay and size?
 - automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduction while trading off against delay

Winter 2010

CSE370 - III - Realizing Boolean Logic

Random logic gates

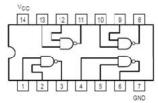
- Transistors quickly integrated into logic gates (1960s)
- Catalog of common gates (1970s)
 - Texas Instruments Logic Data Book the yellow "bible"
 - all common packages listed and characterized (delays, power)
 - typical packages:
 - in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
- Today, very few of these parts are still in use
- However, parts libraries exist for chip design
 - designers reuse already characterized logic gates on chips
 - same reasons as before
 - difference is that the parts don't exist in physical inventory created as needed

Autumn 2006

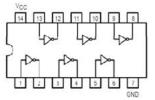
CSE370 - \underline{V} - Implementation Technologies

21

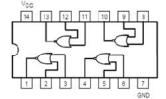
Some logic gate components



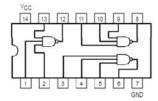
Quad 2-input NANDs - '00



6 inverters (NOTs) - '04



Quad 2-input NORs - '02



3 3-input NANDs - '10

Winter 2010

CSE370 - III - Realizing Boolean Logic