
Realizing Boolean logic

Algebraic expressions to gates
Mapping between different gates
Discrete logic gate components (used in lab 1)

Winter 2010 CSE370 - III - Realizing Boolean Logic 1

A simple example: 1-bit binary adder

Inputs: A, B, Carry-in
Outputs: Sum, Carry-out

A A A A A
B B B B B

CinCout

Outputs: Sum, Carry out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1

0
1
1
0

0
0
0
1

S S S S S

Winter 2010 CSE370 - III - Realizing Boolean Logic 2

0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
0
0
1

1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify expressions
e.g., full adder’s carry-out function g , y

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
= A’ B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= A’ B Cin + A B Cin + A B’ Cin + A B Cin’ + A B Cin
= (A’ + A) B Cin + A B’ Cin + A B Cin’ + A B Cin
= (1) B Cin + A B’ Cin + A B Cin’ + A B Cin
= B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin

Winter 2010 CSE370 - III - Realizing Boolean Logic 3

= B Cin + A B’ Cin + A B Cin + A B Cin’ + A B Cin
= B Cin + A (B’ + B) Cin + A B Cin’ + A B Cin
= B Cin + A (1) Cin + A B Cin’ + A B Cin
= B Cin + A Cin + A B (Cin’ + Cin)
= B Cin + A Cin + A B (1)
= B Cin + A Cin + A B adding extra terms

creates new factoring
opportunities

A simple example: 1-bit binary adder

Inputs: A, B, Carry-in
Outputs: Sum, Carry-out

A A A A A
B B B B B

CinCout

Outputs: Sum, Carry out

A
B

Cin
Cout

S
A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1

0
1
1
0

0
0
0
1

S S S S S

Winter 2010 CSE370 - III - Realizing Boolean Logic 4

0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
0
0
1

1
0
1
1
1

Cout = B Cin + A Cin + A B

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin
= A’ (B’ Cin + B Cin’) + A (B’ Cin’ + B Cin)
= A’ Z + A Z’
= A xor Z = A xor (B xor Cin)

X Y
0 1
1 0

X Y

From Boolean expressions to logic gates

NOT X’ X ~X X/

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X

X

Y

Y

Z

Z

AND X • Y XY X ∧ Y

OR X + Y X ∨ Y

Winter 2010 CSE370 - III - Realizing Boolean Logic 5

X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

From Boolean expressions to logic gates (cont’d)

NAND

1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Z

X Y Z
0 0 0 X xor Y = X Y’ + X’ Y

NOR

XOR
X ⊕ Y

Winter 2010 CSE370 - III - Realizing Boolean Logic 6

Y
Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

0 1 1
1 0 1
1 1 0

Z
X
Y

X or Y but not both
("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

X ⊕ Y

XNOR
X = Y

Before Boolean minimization
Cout = A'BCin + AB'Cin

C C

After Boolean minimization
Cout = BCin + ACin + AB

Full adder: Carry-out

+ ABCin' + ABCin

notA
B

Cin

A
notB
Cin

A
Cout

A
B

A
Cin Cout

B
notCin

A
B

Cin

B
Cin

Winter 2010 7CSE370 - III - Realizing Boolean Logic

Full adder: Sum

Before Boolean minimization
Sum = A'B'Cin + A'BCin'

After Boolean minimization
Sum = (A⊕B) ⊕ Cin

+ AB'Cin' + ABCin

notA
notB
Cin

notA
B

notCin
Sum

A
B

A
notB

notCin

A
B

Cin

Cin Sum

Winter 2010 8CSE370 - III - Realizing Boolean Logic

Preview: A 2-bit ripple-carry adder

A1 B1

A B

A2 B2

CoutCin

Sum1

CoutCin

1-Bit Adder

Sum2

CoutCin0

A
B

A
Cin

B
Cin

Cout

Sum

A
B

Cin Sum

Winter 2010 9CSE370 - III - Realizing Boolean Logic

Mapping truth tables to logic gates

Given a truth table:
1. Write the Boolean expression
2 Mi i i th B l i

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 12. Minimize the Boolean expression

3. Draw as gates
4. Map to available gates

0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

F = A’BC’+A’BC+AB’C+ABC
= A’B(C’+C)+AC(B’+B)

A’B+AC

1

2

= A’B+AC

notA
B

A
C

F F

notA
B

A
C

3

4

Winter 2010 10CSE370 - III - Realizing Boolean Logic

Conversion between gate types

Example: map AND/OR network to NOR-only network
A

NOR
\A

\B
NORA

B
Z

B

C

D

Z

Winter 2010 CSE370 - III - Realizing Boolean Logic 11

conserve
"bubbles"

conserve
"bubbles"

NOR

NOR

\C

\D

Z

NOR

C

D

Z

Conversion between gate types (cont’d)

Example: verify equivalence of two forms
\A

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

Winter 2010 CSE370 - III - Realizing Boolean Logic 12

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

= { (A’ + B’) • (C’ + D’) }’

= (A’ + B’)’ + (C’ + D’)’

= (A • B) + (C • D)

Activity: convert to NAND gates

A

B
C

D

F

D

A

B
C

D

F

A

B
C

D

F

A

Winter 2010 CSE370 - III - Realizing Boolean Logic 13

B
C

D

F

X1 X2 X3 T2 T1

0 0 0 0 0

0 0 1 0 1

Example: tally circuit (outputs # of 1s in inputs)

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

T1 = X1’ X2’ X3 + X1’ X2 X3’
+ X1 X2’ X3’ + X1 X2 X3

= (X1’ X2’ + X1 X2) X3
+ (X1’ X2 + X1 X2’) X3’
= (X1 xor X2)’ X3
+ (X1 xor X2) X3’
= (X1 xor X2) xor X3

Winter 2010 CSE370 - III - Realizing Boolean Logic 14

= (X1 xor X2) xor X3

T2 = X1’ X2 X3 + X1 X2’ X3
+ X1 X2 X3’ + X1 X2 X3

= X1’ (X2 X3) + X1 (X2 + X3)

From Boolean expressions to logic gates

More than one way to map expressions to gates

use of 3-input gate

e.g., Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))

Winter 2010 CSE370 - III - Realizing Boolean Logic 15

Waveform view of logic functions

Just a sideways truth table
but note how edges don’t line up exactly

time

g p y
it takes time for a gate to switch its output!

Winter 2010 CSE370 - III - Realizing Boolean Logic 16

change in Y takes time to "propagate" through gates

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0

Choosing different realizations of a function

0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

two-level realization
(we don’t count NOT gates)

multi-level realization
(gates with fewer inputs)

Winter 2010 CSE370 - III - Realizing Boolean Logic 17

XOR gate (easier to draw
but costlier to build)

Are all realizations equivalent?

Under the same input stimuli, the three alternative
implementations have almost the same waveform behaviorp

delays are different
glitches (hazards) may arise – these could be bad, it depends
variations due to differences in number of gate levels and structure

The three implementations are functionally equivalent

Winter 2010 CSE370 - III - Realizing Boolean Logic 18

Which realization is best?

Reduce number of inputs
literal: input variable (complemented or not)p (p)

can approximate cost of logic gate as 2 transistors per literal
why not count inverters?

fewer literals means less transistors
smaller circuits

fewer inputs implies faster gates
gates are smaller and thus also faster

fan ins (# of gate inputs) are limited in some technologies

Winter 2010 CSE370 - III - Realizing Boolean Logic 19

fan-ins (# of gate inputs) are limited in some technologies
the programmable logic we’ll be using later in the quarter

Reduce number of gates
fewer gates (and the packages they come in) means smaller circuits

directly influences manufacturing costs

Which realization is best? (cont’d)

Reduce number of levels of gates
fewer level of gates implies reduced signal propagation delaysg p g p p g y
minimum delay configuration typically requires more gates

wider, less deep circuits

Hazards/glitches
one without hazards may be preferable/necessary

How do we explore tradeoffs between increased circuit delay
and size?

Winter 2010 CSE370 - III - Realizing Boolean Logic 20

automated tools to generate different solutions
logic minimization: reduce number of gates and complexity
logic optimization: reduction while trading off against delay

Random logic gates

Transistors quickly integrated into logic gates (1960s)
Catalog of common gates (1970s)Catalog of common gates (1970s)

Texas Instruments Logic Data Book – the yellow “bible”
all common packages listed and characterized (delays, power)
typical packages:

in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

Today, very few of these parts are still in use
However, parts libraries exist for chip design

Autumn 2006 CSE370 - V - Implementation Technologies 21

g
designers reuse already characterized logic gates on chips
same reasons as before
difference is that the parts don’t exist in physical inventory –
created as needed

Some logic gate components

Quad 2-input NANDs – ‘00 Quad 2-input NORs – ‘02

Winter 2010 CSE370 - III - Realizing Boolean Logic 22

6 inverters (NOTs) – ‘04 3 3-input NANDs – ‘10

