Minimization of Boolean logic

Minimization

o uniting theorem

o grouping of terms in Boolean functions
Alternate representations of Boolean functions
o cubes

o Karnaugh maps

Winter 2010 CSE370 - V - Logic Minimization

Simplification of two-level combinational logic

Finding a minimal sum of products or product of sums realization
o exploit don’t care information in the process

Algebraic simplification

o not an algorithmic/systematic procedure

o how do you know when the minimum realization has been found?
Computer-aided design tools

o precise solutions require very long computation times, especially for
functions with many inputs (> 10)

o heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions

Hand methods still relevant
o to understand automatic tools and their strengths and weaknesses
o ability to check results (on small examples)

Winter 2010 CSE370 - V - Logic Minimization

The uniting theorem

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

o find two element subsets of the ON-set where only one variable
changes its value — this single varying variable can be eliminated
and a single product term used to represent both elements

F = AB+AB’ = (A+A)B' = B’

A B |F
C—OE B has the same value in both on-set rows
— B remains, actually B’ because B is 0 in both cases
0 1 10
< 1 0 1 A has a different value in the two rows
1 1 lo — A is eliminated
Winter 2010 CSE370 - V - Logic Minimization 3

Boolean cubes

Visual technique for indentifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

01 11
1-cube O—0 2-cube
X 00 10
X
111

3-cube Y 101

0009

Winter 2010 CSE370 - V - Logic Minimization

Mapping truth tables onto Boolean cubes

Uniting theorem combines two "faces" of a cube
into a larger "face"

Example:

F two faces of size 0 (nodes)

1 combine into a face of size 1(line)
01

A varies within face, B does not
this face represents the literal B'

ON-set = solid nodes
OFF-set = empty nodes
DC-set = x'd nodes

Winter 2010 CSE370 - V - Logic Minimization 5

Three variable example

Binary full-adder carry-out logic

(A'+A)BCin
A B Cin Cout AB(Cin'+Cin)
0 0 O 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 O 0 .
1 0 1 1 A(B+B")Cin
1 1 0 1
11 1 1 the on-set is completely covered by

the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Cout = BCin+AB+ACin

Winter 2010 CSE370 - V - Logic Minimization 6

Higher dimensional cubes

Sub-cubes of higher dimension than 2

F(A,B,C) = =m(4,5,6,7)

on-set forms a square

011 111 i.e., a cube of dimension 2
010 110 represents an expression in one variable
i.e.,, 3 dimensions — 2 dimensions
001
Blc 1 A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Winter 2010 CSE370 - V - Logic Minimization

m-dimensional cubes in a n-dimensional
Boolean space

In a 3-cube (three variables):

o a 0-cube, i.e., a single node, yields a term in 3 literals

o a 1-cube, i.e., a line of two nodes, yields a term in 2 literals

o a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal

o a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
In general,

o an m-subcube within an n-cube (m < n) yields a term
with n — m literals

Winter 2010 CSE370 - V - Logic Minimization

Karnaugh maps

Flat map of Boolean cube
o wrap—around at edges
o hard to draw and visualize for more than 4 dimensions
o virtually impossible for more than 6 dimensions
Alternative to truth-tables to help visualize adjacencies
o guide to applying the uniting theorem

o on-set elements with only one variable changing value are
adjacent unlike the situation in a linear truth-table

Winter 2010 CSE370 - V - Logic Minimization 9

Karnaugh maps (cont’d)

Numbering scheme based on Gray—code
o eg.,00,01,11,10
o only a single bit changes in code for adjacent map cells

A
AB —_—
c\._ 00 01 11 10

0

[/] 2 6 4

cl|1

1 3 |7 |s
JR— 1 5 |13 |9
B D

C 13 = 1101= ABCD

Winter 2010 CSE370 - V - Logic Minimization 10

Adjacencies in Karnaugh maps

Wrap from first to last column
Wrap top row to bottom row

N A

<l-0}0->010 110| 100

v

CJ] oo1| o011 111 101

Winter 2010 CSE370 - V - Logic Minimization 11

Karnaugh map examples

f(A,B,C) = =m(0,4,5,7

Cinl o 1 1 1

Winter 2010 CSE370 - V - Logic Minimization 12

More Karnaugh map examples

G(AB,C)=A

[D] o] o|d] F(AB,C) = Sm(0,4,5,7) =AC +B'C

B
A
0 () 0 F' simplg replace 1's with 0's and vice versa
F'(A,B,C) =2 m(1,2,3,6)=BC’ + AC
C () ol o
B
Winter 2010 CSE370 - V - Logic Minimization 13

Karnaugh map: 4-variable example

F(A,B,C,D) = 3m(0,2,3,5,6,7,8,10,11,14,15)
F=C+ABD+B'D

A,

[]
0 1 0 0

(1 _1‘ 1 q

3 0]

find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

Winter 2010 CSE370 - V - Logic Minimization 14

Karnaugh maps: don’t cares

f(A,B,C,D) =2 m(1,3,5,7,9) + d(6,12,13)
o without don't cares
f= AD + B'CD

0| X | O

0
ol
\ 1|

—_
o
o

0 X |0 0

Winter 2010 CSE370 - V - Logic Minimization 15

Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) = = m(1,3,5,7,9) + d(6,12,13)

o f=A'D+B'CD without don't cares
o f=AD+CD with don't cares
A
ol ol x| o by using don't care as a "1"
/ a 2-cube can be formed
’[1_ X[1) rather than a 1-cube to cover
D this node
1| 1) o]o
C don't cares can be treated as
0| X|0]o0 1s or Os
depending on which is more
advantageous

Winter 2010 CSE370 - V - Logic Minimization 16

Activity

Minimize the function F == m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

- A
[A \ 1} 0 X 1
t I = , —7
1)) o (X[F= AC' +
J A'C + 0 0 X X D
0 0 X X f
_ D BC + X 1 ﬂ 0
(x| 1)) o P c
c A'BD’ + [1) x| 1) o
X _1, 0 I I
I I e — A
1 0 X 1
F=BC+ A'B'D' + 0 0 X X
D
F=AC+AB+ — (x| 1) 1]o
C
Q X)|L1)| o
B
Winter 2010 CSE370 - V - Logic Minimization 17

Does BC+A’B’D’+B’C’D’ = A’C+AB+B’CD’ ?

NO! Not in general, only if we ignore the cells with don’t cares

A — =
L1/l o o1
1 0| X 1 —
F, =BC + A'BD’ + o ojojo],
0 0| X | X \
D o 1] 1) o
o F,= AC + AB + ¢]
2= 1yl] 1)]o
x| 1] A
A
|:1 * |:2 1 0 1 1
_ 0 0 1 0
F, + d(3,6,9,12,13) = F, + d(3,6,9,12,13) D
(don't cares all 1)
1 1 1 0
e
F, * D(3,6,9,12,13) = F, * D(3,6,9,12,13) @ 1] o
(don't cares all 0) 5

Winter 2010 CSE370 - V - Logic Minimization 18

Combinational logic summary (so far)

Logic functions, truth tables, and switches

o NOT, AND, OR, NAND, NOR, XOR, .. ., minimal set
Axioms and theorems of Boolean algebra

o proofs by re-writing and perfect induction
Gate logic

o networks of Boolean functions and their time behavior
Canonical forms

o two-level and incompletely specified functions
Simplification

o a start at understanding two-level simplification

Winter 2010 CSE370 - V - Logic Minimization

