Minimization of Boolean logic

- Minimization
- uniting theorem
- grouping of terms in Boolean functions
- Alternate representations of Boolean functions
- cubes
- Karnaugh maps

Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
- exploit don't care information in the process
- Algebraic simplification
- not an algorithmic/systematic procedure
- how do you know when the minimum realization has been found?
- Computer-aided design tools
- precise solutions require very long computation times, especially for functions with many inputs (> 10)
- heuristic methods employed - "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
- to understand automatic tools and their strengths and weaknesses
- ability to check results (on small examples)

The uniting theorem

- Key tool to simplification: $A\left(B^{\prime}+B\right)=A$
- Essence of simplification of two-level logic
- find two element subsets of the ON-set where only one variable changes its value - this single varying variable can be eliminated and a single product term used to represent both elements

$$
F=A^{\prime} B^{\prime}+A B^{\prime}=\left(A^{\prime}+A\right) B^{\prime}=B^{\prime}
$$

A	B	F
0	0	D
0	1	0
1	0	D
1	1	0

B has the same value in both on-set rows
$-B$ remains, actually B^{\prime} because B is 0 in both cases
A has a different value in the two rows

- A is eliminated

Boolean cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables $=\mathrm{n}$-dimensional "cube"

1-cube

Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

ON-set $=$ solid nodes
OFF-set = empty nodes DC-set $=\times$ 'd nodes

Three variable example

- Binary full-adder carry-out logic

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

$$
\text { Cout }=\mathrm{BCin}+\mathrm{AB}+\mathrm{ACin}
$$

Higher dimensional cubes

- Sub-cubes of higher dimension than 2

m -dimensional cubes in a n -dimensional

Boolean space

- In a 3-cube (three variables):
- a 0-cube, i.e., a single node, yields a term in 3 literals
- a 1 -cube, i.e., a line of two nodes, yields a term in 2 literals
- a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
- a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
- an m-subcube within an n-cube ($m<n$) yields a term with n - m literals

Karnaugh maps

- Flat map of Boolean cube
- wrap-around at edges
- hard to draw and visualize for more than 4 dimensions
- virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
- guide to applying the uniting theorem
- on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

Karnaugh maps (cont'd)

- Numbering scheme based on Gray-code
- e.g., 00, 01, 11, 10
- only a single bit changes in code for adjacent map cells

$13=1101=A B C^{\prime} D$

Adjacencies in Karnaugh maps

- Wrap from first to last column
- Wrap top row to bottom row

Karnaugh map examples

- $f(A, B, C)=\Sigma m(0,4,5,7)$

More Karnaugh map examples

$$
\mathrm{G}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{A}
$$

$$
F(A, B, C)=\sum m(0,4,5,7)=A C+B^{\prime} C^{\prime}
$$

F' simply replace 1's with 0's and vice versa $F^{\prime}(A, B, C)=\sum m(1,2,3,6)=B C^{\prime}+A^{\prime} C$

Karnaugh map: 4-variable example

- $F(A, B, C, D)=\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$
F=C+A^{\prime} B D+B^{\prime} D^{\prime}
$$

find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh maps: don't cares

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$
- without don't cares
- $f=A^{\prime} D+B^{\prime} C^{\prime} D$

Karnaugh maps: don't cares (cont'd)

- $f(A, B, C, D)=\Sigma m(1,3,5,7,9)+d(6,12,13)$

- $f=A^{\prime} D+B^{\prime} C^{\prime} D$	without don't cares
- $f=A^{\prime} D+C^{\prime} D$	with don't cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node
don't cares can be treated as 1s or 0s
depending on which is more advantageous

Activity

- Minimize the function $F=\Sigma m(0,2,7,8,14,15)+d(3,6,9,12,13)$

$$
\text { Does } \mathrm{BC}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{AB}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \text { ? }
$$

- NO! Not in general, only if we ignore the cells with don't cares

Combinational logic summary (so far)

- Logic functions, truth tables, and switches
- NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
- proofs by re-writing and perfect induction
- Gate logic
- networks of Boolean functions and their time behavior
- Canonical forms
- two-level and incompletely specified functions
- Simplification
- a start at understanding two-level simplification

