
Minimization of Boolean logic 

  Minimization 
  uniting theorem 
  grouping of terms in Boolean functions 

  Alternate representations of Boolean functions 
  cubes 
  Karnaugh maps 

Winter 2010 CSE370 - V - Logic Minimization 1 

Winter 2010 CSE370 - V - Logic Minimization 2 

Simplification of two-level combinational logic 

  Finding a minimal sum of products or product of sums realization 
  exploit don’t care information in the process 

  Algebraic simplification 
  not an algorithmic/systematic procedure 
  how do you know when the minimum realization has been found? 

  Computer-aided design tools 
  precise solutions require very long computation times, especially for  

functions with many inputs (> 10) 
  heuristic methods employed – "educated guesses" to reduce amount of  

computation and yield good if not best solutions 
  Hand methods still relevant 

  to understand automatic tools and their strengths and weaknesses 
  ability to check results (on small examples) 



Winter 2010 CSE370 - V - Logic Minimization 3 

A  B  F 

0  0  1 

0  1  0 

1  0  1 

1  1  0 

B has the same value in both on-set rows 
– B remains, actually B’ because B is 0 in both cases 

A has a different value in the two rows 
– A is eliminated 

F = A’B’+AB’ = (A’+A)B’ = B’ 

The uniting theorem 

  Key tool to simplification: A (B’ + B) = A 
  Essence of simplification of two-level logic 

  find two element subsets of the ON-set where only one variable 
changes its value – this single varying variable can be eliminated 
and a single product term used to represent both elements 

Winter 2010 CSE370 - V - Logic Minimization 4 

1-cube 
X 

0 1 

Boolean cubes 

  Visual technique for indentifying when the uniting theorem 
can be applied 

  n input variables = n-dimensional "cube" 

2-cube 

X 

Y 

11 

00 

01 

10 

3-cube 

X 

Y Z 

000 

111 

101 
4-cube 

W 
X 

Y 
Z 

0000 

1111 

1000 

0111 



Winter 2010 CSE370 - V - Logic Minimization 5 

A  B  F 

0  0  1 

0  1  0 

1  0  1 

1  1  0 

ON-set = solid nodes 
OFF-set = empty nodes 
DC-set = ×'d nodes 

two faces of size 0 (nodes)  
combine into a face of size 1(line) 

A varies within face, B does not 
this face represents the literal B' 

Mapping truth tables onto Boolean cubes 

  Uniting theorem combines two "faces" of a cube 
into a larger "face" 

  Example: 

A 

B 

11 

00 

01 

10 

F 

Winter 2010 CSE370 - V - Logic Minimization 6 

A  B  Cin  Cout 
0  0  0  0 
0  0  1  0 
0  1  0  0 
0  1  1  1 
1  0  0  0 
1  0  1  1 
1  1  0  1 
1  1  1  1 

(A'+A)BCin 

AB(Cin'+Cin) 

A(B+B')Cin 

Cout = BCin+AB+ACin 

the on-set is completely covered by  
the combination (OR) of the subcubes  
of lower dimensionality - note that “111” 
is covered three times 

Three variable example 

  Binary full-adder carry-out logic 

A 

B C 

000 

111 

101 



Winter 2010 CSE370 - V - Logic Minimization 7 

F(A,B,C) = Σm(4,5,6,7) 

on-set forms a square 
i.e., a cube of dimension 2 

represents an expression in one variable        
i.e., 3 dimensions  –  2 dimensions 

A is asserted (true) and unchanged 
B and C vary 

This subcube represents the 
literal A 

Higher dimensional cubes 

  Sub-cubes of higher dimension than 2 

A 

B C 

000 

111 

101 

100 

001 

010 

011 
110 

Winter 2010 CSE370 - V - Logic Minimization 8 

m-dimensional cubes in a n-dimensional 
Boolean space 

  In a 3-cube (three variables): 
  a 0-cube, i.e., a single node, yields a term in 3 literals 
  a 1-cube, i.e., a line of two nodes, yields a term in 2 literals 
  a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal 
  a 3-cube, i.e., a cube of eight nodes, yields a constant term "1" 

  In general, 
  an m-subcube within an n-cube (m < n) yields a term 

with n – m literals 



Winter 2010 CSE370 - V - Logic Minimization 9 

A  B  F 

0  0  1 

0  1  0 

1  0  1 

1  1  0 

Karnaugh maps 

  Flat map of Boolean cube 
  wrap–around at edges 
  hard to draw and visualize for more than 4 dimensions 
  virtually impossible for more than 6 dimensions 

  Alternative to truth-tables to help visualize adjacencies 
  guide to applying the uniting theorem 
  on-set elements with only one variable changing value are 

adjacent unlike the situation in a linear truth-table 

0  2 

1  3 

0 1 
A 

B 
0 

1 

1 

0 0 

1 

Winter 2010 CSE370 - V - Logic Minimization 10 

Karnaugh maps (cont’d) 

  Numbering scheme based on Gray–code 
  e.g., 00, 01, 11, 10 
  only a single bit changes in code for adjacent map cells 

0  2 

1  3 

00 01 
AB 

C 
0 

1 
6  4 

7  5 

11 10 

C 

B 

A 

0  2 

1  3 

6  4 

7  5 
C 

B 

A 

0  4 

1  5 

12  8 

13  9 D 

A 

3  7 

2  6 

15  11 

14  10 
C 

B 13 = 1101= ABC’D 



Winter 2010 CSE370 - V - Logic Minimization 11 

Adjacencies in Karnaugh maps 

  Wrap from first to last column 
  Wrap top row to bottom row 

000  010 

001  011 

110  100 

111  101 C 

B 

A 

A 

B C 

000 

111 

101 

100 

001 

010 

011 
110 

Winter 2010 CSE370 - V - Logic Minimization 12 

Karnaugh map examples 

  F = 

  Cout = 

  f(A,B,C) = Σm(0,4,5,7)  
   

0  0 

0  1 

1  0 

1  1 Cin 

B 

A 

1  1 

0  0 B 

A 

1  0 

0  0 

0  1 

1  1 C 

B 

A 



Winter 2010 CSE370 - V - Logic Minimization 13 

F(A,B,C) = Σm(0,4,5,7) 

F'(A,B,C) = Σ m(1,2,3,6) 
F' simply replace 1's with 0's and vice versa 

G(A,B,C) =  

More Karnaugh map examples 

0  0 

0  0 

1  1 

1  1 C 

B 

A 

1  0 

0  0 

0  1 

1  1 C 

B 

A 

0  1 

1  1 

1  0 

0  0 C 

B 

A 

A 

= AC + B’C’ 

= BC’ + A’C 

1  0 

0  1 

0  1 

0  0 

1  1 

1  1 

1  1 

1  1 
C 

Karnaugh map: 4-variable example 

  F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15) 

F = 

Winter 2010 CSE370 - V - Logic Minimization 14 

C + B’ D’ 

find the smallest number of the largest possible  
subcubes to cover the ON-set 

(fewer terms with fewer inputs per term) 

D 

A 

B 

A 
B 

C 
D 

0000 

1111 

1000 

0111 

+ A’ B D  



Winter 2010 CSE370 - V - Logic Minimization 15 

+ B’C’D 

Karnaugh maps: don’t cares 

  f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13) 
  without don't cares 

  f =       

0  0 

1  1 

X  0 

X  1 
D 

A 

1  1 

0  X 

0  0 

0  0 

B 

C 

A’D 

Winter 2010 CSE370 - V - Logic Minimization 16 

Karnaugh maps: don’t cares (cont’d) 

  f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13) 
  f = A'D + B'C'D    without don't cares 
  f =     with don't cares 

don't cares can be treated as 
1s or 0s 

depending on which is more  
advantageous 

0  0 

1  1 

X  0 

X  1 
D 

A 

1  1 

0  X 

0  0 

0  0 

B 

C 

A'D 

by using don't care as a "1" 
a 2-cube can be formed  
rather than a 1-cube to cover 
this node 

+ C'D 



1  0 

0  0 

X  1 

X  X 

X  1 

1  X 

1  0 

1  0 

D 

A 

B 

C 

1  0 

0  0 

X  1 

X  X 

X  1 

1  X 

1  0 

1  0 

D 

A 

B 

C 

Activity 

  Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13) 

Winter 2010 CSE370 - V - Logic Minimization 17 

F = AC’ + 
A’C + 
BC + 
AB + 
A’B’D’ + 
B’C’D’ 

1  0 

0  0 

X  1 

X  X 

X  1 

1  X 

1  0 

1  0 

D 

A 

B 

C 

F = BC + A’B’D’ + B’C’D’ 

F = A’C + AB + B’C’D’ 

1  0 

0  0 

X  1 

X  X 

X  1 

1  X 

1  0 

1  0 

D 

A 

B 

C 

1  0 

0  0 

1  1 

1  0 

1  1 

1  1 

1  0 

1  0 

D 

A 

B 

C 

Does BC+A’B’D’+B’C’D’ = A’C+AB+B’C’D’ ? 

  NO!   Not in general, only if we ignore the cells with don’t cares  

Winter 2010 CSE370 - V - Logic Minimization 18 

1  0 

0  0 

0  1 

0  0 

0  1 

1  1 

1  0 

1  0 

D 

A 

B 

C 

F1 = BC + A’B’D’ + B’C’D’ 

F2 = A’C + AB + B’C’D’ 

F1 ≠ F2  

F1 + d(3,6,9,12,13) = F2 + d(3,6,9,12,13) 
(don’t cares all 1) 

F1  D(3,6,9,12,13) = F2  D(3,6,9,12,13) 
(don’t cares all 0)     



Winter 2010 CSE370 - V - Logic Minimization 19 

Combinational logic summary (so far) 

  Logic functions, truth tables, and switches 
  NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set 

  Axioms and theorems of Boolean algebra 
  proofs by re-writing and perfect induction 

  Gate logic 
  networks of Boolean functions and their time behavior 

  Canonical forms 
  two-level and incompletely specified functions 

  Simplification 
  a start at understanding two-level simplification 


