
Minimization of Boolean logic

  Minimization
  uniting theorem
  grouping of terms in Boolean functions

  Alternate representations of Boolean functions
  cubes
  Karnaugh maps

Winter 2010 CSE370 - V - Logic Minimization 1

Winter 2010 CSE370 - V - Logic Minimization 2

Simplification of two-level combinational logic

  Finding a minimal sum of products or product of sums realization
  exploit don’t care information in the process

  Algebraic simplification
  not an algorithmic/systematic procedure
  how do you know when the minimum realization has been found?

  Computer-aided design tools
  precise solutions require very long computation times, especially for

functions with many inputs (> 10)
  heuristic methods employed – "educated guesses" to reduce amount of

computation and yield good if not best solutions
  Hand methods still relevant

  to understand automatic tools and their strengths and weaknesses
  ability to check results (on small examples)

Winter 2010 CSE370 - V - Logic Minimization 3

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains, actually B’ because B is 0 in both cases

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The uniting theorem

  Key tool to simplification: A (B’ + B) = A
  Essence of simplification of two-level logic

  find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be eliminated
and a single product term used to represent both elements

Winter 2010 CSE370 - V - Logic Minimization 4

1-cube
X

0 1

Boolean cubes

  Visual technique for indentifying when the uniting theorem
can be applied

  n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111

Winter 2010 CSE370 - V - Logic Minimization 5

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes)
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean cubes

  Uniting theorem combines two "faces" of a cube
into a larger "face"

  Example:

A

B

11

00

01

10

F

Winter 2010 CSE370 - V - Logic Minimization 6

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

Cout = BCin+AB+ACin

the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

Three variable example

  Binary full-adder carry-out logic

A

B C

000

111

101

Winter 2010 CSE370 - V - Logic Minimization 7

F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes

  Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011
110

Winter 2010 CSE370 - V - Logic Minimization 8

m-dimensional cubes in a n-dimensional
Boolean space

  In a 3-cube (three variables):
  a 0-cube, i.e., a single node, yields a term in 3 literals
  a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
  a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
  a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

  In general,
  an m-subcube within an n-cube (m < n) yields a term

with n – m literals

Winter 2010 CSE370 - V - Logic Minimization 9

A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps

  Flat map of Boolean cube
  wrap–around at edges
  hard to draw and visualize for more than 4 dimensions
  virtually impossible for more than 6 dimensions

  Alternative to truth-tables to help visualize adjacencies
  guide to applying the uniting theorem
  on-set elements with only one variable changing value are

adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Winter 2010 CSE370 - V - Logic Minimization 10

Karnaugh maps (cont’d)

  Numbering scheme based on Gray–code
  e.g., 00, 01, 11, 10
  only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D

Winter 2010 CSE370 - V - Logic Minimization 11

Adjacencies in Karnaugh maps

  Wrap from first to last column
  Wrap top row to bottom row

000 010

001 011

110 100

111 101 C

B

A

A

B C

000

111

101

100

001

010

011
110

Winter 2010 CSE370 - V - Logic Minimization 12

Karnaugh map examples

  F =

  Cout =

  f(A,B,C) = Σm(0,4,5,7)

0 0

0 1

1 0

1 1 Cin

B

A

1 1

0 0 B

A

1 0

0 0

0 1

1 1 C

B

A

Winter 2010 CSE370 - V - Logic Minimization 13

F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) =

More Karnaugh map examples

0 0

0 0

1 1

1 1 C

B

A

1 0

0 0

0 1

1 1 C

B

A

0 1

1 1

1 0

0 0 C

B

A

A

= AC + B’C’

= BC’ + A’C

1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

Karnaugh map: 4-variable example

  F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

Winter 2010 CSE370 - V - Logic Minimization 14

C + B’ D’

find the smallest number of the largest possible
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

D

A

B

A
B

C
D

0000

1111

1000

0111

+ A’ B D

Winter 2010 CSE370 - V - Logic Minimization 15

+ B’C’D

Karnaugh maps: don’t cares

  f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
  without don't cares

  f =

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A’D

Winter 2010 CSE370 - V - Logic Minimization 16

Karnaugh maps: don’t cares (cont’d)

  f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
  f = A'D + B'C'D without don't cares
  f = with don't cares

don't cares can be treated as
1s or 0s

depending on which is more
advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed
rather than a 1-cube to cover
this node

+ C'D

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

Activity

  Minimize the function F = Σ m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

Winter 2010 CSE370 - V - Logic Minimization 17

F = AC’ +
A’C +
BC +
AB +
A’B’D’ +
B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

F = BC + A’B’D’ + B’C’D’

F = A’C + AB + B’C’D’

1 0

0 0

X 1

X X

X 1

1 X

1 0

1 0

D

A

B

C

1 0

0 0

1 1

1 0

1 1

1 1

1 0

1 0

D

A

B

C

Does BC+A’B’D’+B’C’D’ = A’C+AB+B’C’D’ ?

  NO! Not in general, only if we ignore the cells with don’t cares

Winter 2010 CSE370 - V - Logic Minimization 18

1 0

0 0

0 1

0 0

0 1

1 1

1 0

1 0

D

A

B

C

F1 = BC + A’B’D’ + B’C’D’

F2 = A’C + AB + B’C’D’

F1 ≠ F2

F1 + d(3,6,9,12,13) = F2 + d(3,6,9,12,13)
(don’t cares all 1)

F1 D(3,6,9,12,13) = F2 D(3,6,9,12,13)
(don’t cares all 0)

Winter 2010 CSE370 - V - Logic Minimization 19

Combinational logic summary (so far)

  Logic functions, truth tables, and switches
  NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

  Axioms and theorems of Boolean algebra
  proofs by re-writing and perfect induction

  Gate logic
  networks of Boolean functions and their time behavior

  Canonical forms
  two-level and incompletely specified functions

  Simplification
  a start at understanding two-level simplification

