Working with Combinational Logic

- Simplification
- two-level simplification
- exploiting don't cares
- algorithm for simplification
- Logic realization
- two-level logic and canonical forms realized with NANDs and NORs
- multi-level logic, converting between ANDs and ORs

Design example: 2x2-bit multiplier

block diagram and truth table

4-variable K-map for each of the 4 output functions

Design example: 2x2-bit multiplier (activity)

Definition of terms for two-level simplification

- Implicant
- single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
- implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
- prime implicant is essential if it alone covers an element of ON-set
- will participate in ALL possible covers of the ON-set
- DC-set used to form prime implicants but not to make implicant essential
- Objective:
- grow implicant into prime implicants (minimize literals per term)
- cover the ON-set with as few prime implicants as possible (minimize number of product terms)

Examples to illustrate terms

Algorithm for two-level simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
- Step 1: choose an element of the ON-set
- Step 2: find "maximal" groupings of 1 s and Xs adjacent to that element
- consider top/bottom row, left/right column, and corner adjacencies
- this forms prime implicants (number of elements always a power of 2)
- Repeat Steps 1 and 2 to find all prime implicants
- Step 3: revisit the 1s in the K-map
- if covered by single prime implicant, it is essential, and participates in final cover
- 1s covered by essential prime implicant do not need to be revisited
- Step 4: if there remain 1s not covered by essential prime implicants
- select the smallest number of prime implicants that cover the remaining 1 s

Algorithm for two-level simplification (example)

Activity

- List all prime implicants for the following K-map:

CD'

AB
AC'D

- Which are essential prime implicants? CD \quad BD $A C^{\prime} D$
- What is the minimum cover? $\quad C^{\prime} \quad B D \quad A C^{\prime} D$

Implementations of two-level logic

- Sum-of-products
- AND gates to form product terms (minterms)
- OR gate to form sum

- Product-of-sums
- OR gates to form sum terms (maxterms)
- AND gates to form product

Two-level logic using NAND gates (cont'd)

- OR gate with inverted inputs is a NAND gate
- de Morgan's: $\quad A^{\prime}+B^{\prime}=(A \cdot B)^{\prime}$
- Two-level NAND-NAND network
- inverted inputs are not counted
- in a typical circuit, inversion is done once and signal distributed

Two-level logic using NOR gates (cont'd)

- AND gate with inverted inputs is a NOR gate
- de Morgan's: $A^{\prime} \cdot B^{\prime}=(A+B)^{\prime}$
- Two-level NOR-NOR network
- inverted inputs are not counted
- in a typical circuit, inversion is done once and signal distributed

Multi-level logic

- $x=A D F+A E F+B D F+B E F+C D F+C E F+G$
- reduced sum-of-products form - already simplified
- 6×3-input AND gates $+1 \times 7$-input OR gate (that may not even exist!)
- 25 wires (19 literals plus 6 internal wires)
- $x=(A+B+C)(D+E) F+G$
- factored form - not written as two-level S-o-P
- 1×3-input OR gate, 2×2-input OR gates, 1×3-input AND gate
- 10 wires (7 literals plus 3 internal wires)

Conversion of multi-level logic to NAND gates

Conversion of multi-level logic to NORs
$-F=A(B+C D)+B C^{\prime}$
original
AND-OR
network

Summary for multi-level logic

- Advantages
- circuits may be smaller
- gates have smaller fan-in
- circuits may be faster
- Disadvantages
- more difficult to design
- tools for optimization are not as good as for two-level
- analysis is more complex

