Combinational logic design case studies

- Arithmetic circuits
- integer representations
- addition/subtraction
- how redundant logic can make circuits faster
- General design procedure
- Case studies
- BCD to 7-segment display controller
- calendar subsystem
- arithmetic/logic units

Arithmetic circuits

- Excellent examples of combinational logic design
- Time vs. space trade-offs
- doing things fast may require more logic and thus more space
- example: carry look-ahead logic
- Arithmetic and logic units
- general-purpose building blocks
- critical components of processor data-paths
- used within most computer instructions

Number systems

- Representation of positive numbers is the same in most systems
- Major differences are in how negative numbers are represented
- Representation of negative numbers come in three major schemes
- sign and magnitude
- 1 s complement
- 2s complement
- Assumptions
- we'll assume a 4 bit machine word
- 16 different values can be represented
- roughly half are positive, half are negative

Sign and magnitude

- One bit dedicate to sign (positive or negative)
- sign: $0=$ positive (or zero), $1=$ negative
- Rest represent the absolute value or magnitude
- three low order bits: 0 (000) thru 7 (111)
- Range for n bits
- $+/-2^{\text {n-1 }}-1$ (two representations for 0)
- Cumbersome addition/subtraction
- must compare magnitudes to determine sign of result

$$
\begin{aligned}
& 0100=+4 \\
& 1100=-4
\end{aligned}
$$

1s complement

- Subtraction: first form 1s complement and then add
- Two representations of 0
- causes some complexities in addition
- High-order bit can act as sign bit

2s complement

- Same as 1 s complement but with negative numbers shifted one position towards 0 (merge two 0 s into a single representations)
- only one representation for 0
- one more negative number than positive numbers
- high-order bit can act as sign bit

$$
\begin{aligned}
& 0100=+4 \\
& 1100=-4
\end{aligned}
$$

2 s complement (cont'd)

- If N is a positive number, then the negative of N (its 2 s complement or N^{*}) is $\mathrm{N}^{*}=2^{\mathrm{n}}-\mathrm{N}$
- example: 2 s complement of 7

$$
\begin{aligned}
2^{4} & =10000 \\
\text { subtract } 7 & =\frac{0111}{1001}=\text { repr. of }-7 \\
2^{4} & =10000 \\
\text { subtract }-7 & =\frac{1001}{0111}=\text { repr. of } 7
\end{aligned}
$$

- example: 2 s complement of -7
- shortcut: 2 s complement $=$ bit-wise complement +1
- 0111 -> $1000+1$-> 1001 (representation of -7)
- 1001 -> $0110+1$-> 0111 (representation of 7)

2 s complement (cont’d)

- Why does bit-wise complement +1 work?

2 s complement addition and subtraction

- Simple addition and subtraction
- simple scheme makes 2 s complement the unanimous choice for integer number systems in computers

$$
\begin{array}{rrrr}
4 & 0100 \\
+3 & 0011 \\
\hline 7 & \frac{+(-3)}{-7} & \frac{1101}{11001} \\
4 & 0111 & -4 & 1100 \\
\frac{-3}{1} & \frac{1101}{10001} & \frac{+3}{-1} & \frac{0011}{1111}
\end{array}
$$

Overflow in 2 s complement addition/ subtraction

- Overflow conditions
- add two positive numbers and end up with a negative number
- add two negative numbers and end up with a positive number

Overflow conditions

- Overflow
- A3' B3' S3 + A3 B3 S3'
- Another way to say same thing
- When carry into sign bit position is not equal to carry-out

	0111		0000		1000		1111
5	0101	5	0101	- 7	1001	-3	1101
3	0011	2	0010	-2	1110	-5	1011
-8	1000	7	0111	7	10111	-8	11000
	erflow		erflow		erflow		overflow
Winter 2010		CSE370-X - Adders					

Circuits for binary addition

- Half adder (add 2 1-bit numbers)
- Sum $=A i^{\prime} \mathrm{Bi}+A i B i=A i x o r ~ B i$
- Cout $=\mathrm{Ai} \mathrm{Bi}$
- Full adder (carry-in to cascade for multi-bit adders)
- Sum = Cin xor A xor B
- Cout $=B C i n+A C i n+A B=C i n(A+B)+A B$

Ai	Bi	Sum	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1

Ai	Bi	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full adder implementations

- Standard approach

- 6 gates
- 2 XORs, 2 ANDs, 2 ORs
- Alternative implementation

$$
\text { Cout }=A B+\operatorname{Cin}(A \text { xor } B)=A B+B C i n+A C i n
$$

- 5 gates
- half adder is an XOR gate and AND gate
- 2 XORs, 2 ANDs, 1 OR

Adder/subtractor

- Use an adder to do subtraction thanks to 2 s complement representation
- $A-B=A+(-B)=A+B^{\prime}+1$
- control signal selects B or 2 s complement of B

Ripple-carry adders

- Critical delay
- the propagation of carry from low to high order stages

Winter 2010

Ripple-carry adders (cont'd)

- Critical delay
- the propagation of carry from low to high order stages
- $1111+0001$ is the worst case addition
- carry must propagate through all bits

Carry-lookahead logic

- Carry generate: $\mathrm{Gi}=\mathrm{Ai} \mathrm{Bi}$
- must generate carry when $\mathrm{A}=\mathrm{B}=1$
- Carry propagate: $\mathrm{Pi}=\mathrm{Ai}$ xor Bi
- carry-in will equal carry-out in these two cases: $A=0, B=1$ or $A=1, B=0$
- Carry kill: Ki = Ai'Bi'
- carry-out will be zero no matter what carry-in when $\mathrm{A}=\mathrm{B}=0$
- $\mathrm{Gi}+\mathrm{Pi}+\mathrm{Ki}=1$
- Sum and Cout can be re-expressed in terms of generate/propagate (or in terms of generate/kill):
- $\mathrm{Si}=\mathrm{Ai}$ xor Bi xor Ci
$=\mathrm{Pi}$ xor Ci
- $\mathrm{Ci}+1=\mathrm{AiBi}+\mathrm{AiCi}+\mathrm{BiCi}$
$\mathrm{Ci}+1^{\prime}=\mathrm{Ki}+\mathrm{Pi} \mathrm{Ci}$
$=\mathrm{AiBi}+\mathrm{Ci}(\mathrm{Ai}+\mathrm{Bi})$ $\mathrm{Ci}+1=\mathrm{Ki}{ }^{\prime}\left(\mathrm{Pi}^{\prime}+\mathrm{Ci}\right)$
$=\mathrm{Ai} \mathrm{Bi}+\mathrm{Ci}(\mathrm{Ai}$ xor Bi$)$ $=\mathrm{Gi}+\mathrm{PiCi}$

Carry-lookahead logic (cont'd)

- Re-express the carry logic as follows:
- $\mathrm{C} 1=\mathrm{G} 0+\mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 2=\mathrm{G} 1+\mathrm{P} 1 \mathrm{C} 1=\mathrm{G} 1+\mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 3=\mathrm{G} 2+\mathrm{P} 2 \mathrm{C} 2=\mathrm{G} 2+\mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 2 \mathrm{P} 1 \mathrm{P} 0 \mathrm{C} 0$
- $\mathrm{C} 4=\mathrm{G} 3+\mathrm{P} 3 \mathrm{C} 3=\mathrm{G} 3+\mathrm{P} 3 \mathrm{G} 2+\mathrm{P} 3 \mathrm{P} 2 \mathrm{G} 1+\mathrm{P} 3 \mathrm{P} 2 \mathrm{P} 1 \mathrm{G} 0$ + P3 P2 P1 P0 C0
- Each of the carry equations can be implemented with two-level logic
- all inputs are now directly derived from data inputs and NOT from intermediate carries
- this allows computation of all sum outputs to proceed in PARALLEL

Carry-lookahead implementation

- Adder with propagate and generate outputs

$\mathrm{CO}-\square-\mathrm{C} 1 @ 3$
CO C

$\mathrm{CO}=\square$
$\mathrm{PO}=\square$
$\mathrm{PO}=\square$
P 1
CO
G1 \qquad

G2

Carry-lookahead implementation (cont'd)

- Carry-lookahead logic generates individual carries
- sums computed much more quickly in parallel
- however, cost of carry logic increases with more stages

Carry-select adder

- Redundant hardware to make carry calculation go faster
- compute two high-order sums in parallel while waiting for carry-in
- one assuming carry-in is 0 and another assuming carry-in is 1
- select correct result once carry-in is finally computed

Scaling of carry-select adders

- Size: roughly twice the size of a ripple-carry

Delay: delay through a 4-bit ripple-carry plus the multiplexor path highlighted in blue (3 2-1 multiplexors, in this example)

