Exam 1 Results

= Average = 78; Median = 81; StDev = 11.1 (68% within 67 and 89)

: ! (M [
Al

|
40 e

| i
T 11 I |l
" 1“!'”'II |II I

I B LU BRLRERLL L W
o HH T T
0
Autumn 2010 CSE370 - XI - Programmable Logic

“#4
#3
“#H2
#1

Implementation Technologies

= Standard gates (pretty much done)
o gate packages
o cell libraries
= Regular logic (we’ve been here)
o multiplexers
o decoders
= Two-level programmable logic (we are now here)
o PALs, PLAs, PLDs
o ROMs
o FPGAs

Autumn 2010 CSE370 - XI - Programmable Logic

Programmable logic arrays

Pre-fabricated building block of many AND/OR gates

o actually NOR or NAND

o "personalized" by making/breaking connections among the gates
o programmable array block diagram for sum of products form

L] L] L]
inputs
AND product R
array
array terms
outputs
L] L] L]
Autumn 2010 CSE370 - XI - Programmable Logic
Enabling concept
Shared product terms among outputs
FO=A +B'C
example: FI=AC + AB
F2=B'C + AB
F3=B'C + A
]] input side:
personality matrix 1 = uncomplemented in term
0 = complemented in term
product | inputs outputs — = does not participate
term A B C |FO F1 F2 F3 .
AB 1 1 - Jo 1 1 o output side:
B'C - 0 110 o o 1 1 = term connected to output
AC' 1 - 0lo 1 0o o 0 = no connection to output
B'C' - 0 0|1 0 1 O
A 1 - — 11 0 o 1 reuse of terms

Autumn 2010 CSE370 - XI - Programmable Logic

Before programming

All possible connections are available before "programming"”
o in reality, all AND and OR gates are NANDs

i

URURVRVRY

Autumn 2010 CSE370 - XI - Programmable Logic

After programming

Unwanted connections are "blown"

o fuse (normally connected, break unwanted ones)

o anti-fuse (normally discE?nréected, make wanted connections)
A

YIvly

Autumn 2010 CSE370 - XI - Programmable Logic

Alternate representation for high fan-in structures

Short-hand notation so we don't have to draw all the wires

o x signifies a connection is present and perpendicular signal is an
input to gate

ATaeY

notation for implementing
FO=AB + A'B

F1=CD + CD

JUOU

Autumn 2010

vy

} AB
L/

) A'B'
L/

) f‘D'
L/

) C'D
L/

AB+A'B'

CD'+C'D
CSE370 - XI - Programmable Logic 7

Programmable logic array example

Multiple functions of A, B, C

Autumn 2010

full decoder as for memory address

o FI=ABC bits stored in memory
F2=A+B+C eBLAS /
=] = + +
—)]) 7_\77 e llall
o F3=A'B'C) AB'C
0 F4=A+B+C) ABC
o F5=AxorBxorC) A'BC'
o F6 = A xnor B xnor C) A'BC
'_\ 1~
AB'C
A B C|F1F2F3F4F5F6 =
000001100) AB'C
001{0 1 0111 [ABC'
010{01 0111 ()
0110 1 0100 N
100010111 [ABC
101/0 1 0100
11001 0100
111/1 100 11

CSE370 - XI - Programmable Logic 8

PALs and PLLAs

Programmabile logic array (PLA)
o what we've seen so far
o unconstrained fully-general AND and OR arrays

Programmable array logic (PAL) \VAVAvav,

o constrained topology of the OR array

o innovation by Monolithic Memories

o faster and smaller OR plane

a given column of the OR array
has access to only a subset of

the possible product terms

S

Autumn 2010 CSE370 - XI - Programmable Logic

PALs and PLAs: design example

BCD to Gray code converter

Z=AB'CD + BCD + AD' + B'CD'

A B C D|W X Y Z

0 0 0 00 0 0 0

00 0 1/0 0 0 1

0 0 1 00 0 1 1

8 (3 (1) (1) 8 (1) i 8 minimized functions:
R S S W =A+BD + BC
0 1 1 1)1 0o 1 1 X = BC

1 0 0 0|1 0 o0 1 Y=B+C

1 0 0 11 0 0 0

1 0 1 - |- - - -

11 - - |- - - -

Autumn 2010 CSE370 - XI - Programmable Logic

PALSs and PLAs: design example (cont’d)

Code converter: programmed PLA minimized functions:
A B CD

1T T W=A+BD + BC
MM MM — X=BC

) A Y=B+C

— Z = AB'CD + BCD + AD' + B'CD'
) BD

(R

L/ BC
) . not a particularly good

=\ BC candidate for PAL/PLA

L/ B implementation since no terms
) c are shared among outputs

)

L/ AB'CD

L/

= BCD

L/ AD' however, much more compact
) and regular implementation

BCD' when compared with discrete
AND and OR gates
W X Y Z
Autumn 2010 CSE370 - XI - Programmable Logic 11

PALs and PLAs: design example (cont’d)

A B CD
O
Code converter: programmed PAL § i D A
[BD
I, BC
)
L) 0
[BC
)
L 0
) °
4 product terms =
per each OR gate = 0
., B
)
— C
)
D, 0
R
) 0
— ABCD
) BCD
= AD'
L

WY

Autumn 2010 CSE370 - XI - Programmable Logic 12

PALSs and PLAs: design example (cont’d)

Code converter: NAND gate implementation
o loss or regularity, harder to understand
o harder to make changes

Autumn 2010

CSE370 - XI - Programmable Logic

PALs and PLAs: another design example

A B CD
. R A
Magnitude comparator MMM —
A B C D |EQ NE LT GT ==
0 0 0 0|1 0 0 O =
0 0 0 1|0 1 1 0 L/
0 0 1t 010 1 1 O
L
0 0 1 1|0 1 1 0 —
0 1 0 0|0 1 0 1 L
01 0 1|1 0 0 O D,
0 1t 1t 010 1 1 O =
0 1 1 1|0 1 1 0)
1 0 0 010 1 0 1 N
1 0 0 1 /0 1 0 1 =
1 0 1 0|1 0 0 O)
1 0 1 100 1 1 0)
1 1 0 010 1 0 1 =
1 1 0 10 1 0 1)
1 1 1 010 1 0 1 Y
1 1 1 1'1T 0 0 0 L

minimized functions:
EQ = AB'C'D’' + ABC'D + ABCD + AB'CD’ NE = AC' + AC + B'D + BD’

LT = AC + ABD + B'CD

Autumn 2010

GT = AC’' + ABC + BCD'

CSE370 - XI - Programmable Logic

A'B'C'D
A'BC'D
ABCD
AB'CD'
AC
AC
B'D
BD'
A'B'D
B'CD
ABC
BC'D

Activity

Map the following functions to the PLA below:
o W=AB+AC +BC ABC
o X=ABC +AB' + AB AVAvavi

o Y=ABC' +BC+BC

UUUUUUY

Autumn 2010 CSE370 - XI - Programmable Logic

= ¢

Activity (cont’d)

9 terms won't fitin a 7 term PLA

o can apply concensus theorem
to W to simplify to:
W=AB+AC

8 terms wont’ fit in a 7 term PLA

o observe that AB = ABC + ABC’

o can rewrite W to reuse terms:
W =ABC + ABC' + A'C’

Now it fits

o W=ABC +ABC’ + AC

o X=ABC+AB +AB

A BC

WM — ABC
L/
—\ ABC’
L/
) AC
L/
) AB’
L/
—\ A'B
L/
) BC
L/
Y B'C
L

o Y=ABC +BC+BC
This is called technology mapping

o manipulating logic functions
so that they can use available
resources

Autumn 2010 CSE370 - XI - Programmable Logic

= ¢

Read-only memories

Two dimensional array of 1s and Os word lines (only one
is active — decoder is

o entry (row) is called a "word" just right for this)

o width of row = word-size 101 1 1

2 index is called an "address" g g g g

o address is input 5 T T %

o selected word is output

word[i] = 0011
decoder L{ l'£

]

0
TTTTTT, =
Address
bit lines (normally pulled to 1 through

resistor — selectively connected to 0
by word line controlled switches)

word[j] = 1010

internal organization

Autumn 2010 CSE370 - XI - Programmable Logic 17

ROMs and combinational logic

Combinational logic implementation (two-level canonical form)
using a ROM

FO=A'B'C + AB'C' + AB'C
FI1=A'B'C + A'BC' + ABC
F2=A'B'C + AB'C + AB'C
F3=A'BC + AB'C' +ABC

A B C|[FO F1 F2 F3

000[0 0 1 O ROM

0011 1 1 0O 8 words x 4 bits/word

010(0 1 0 O

011(0 0 0 1

1T 111

1011 0 0 O

110/0 0 0 1 A B C FOF1F2F3

1110 1 0 0 address outputs
truth table block diagram

Autumn 2010 CSE370 - XI - Programmable Logic 18

ROM structure

Similar to a PLA structure but with a fully decoded AND array
o completely flexible OR array (unlike PAL)

n address lines

inputs

memory

decoder 20 word array
I.W " (2" words
ines

by m bits)

outputs

m data lines

Autumn 2010 CSE370 - XI - Programmable Logic 19

ROM vs. PLA

ROM approach advantageous when

o design time is short (no need to minimize output functions)
o most input combinations are needed (e.g., code converters)
o little sharing of product terms among output functions
ROM problems

o size doubles for each additional input

o can't exploit don't cares

PLA approach advantageous when

o design tools are available for multi-output minimization

o there are relatively few unique minterm combinations

o many minterms are shared among the output functions
PAL problems

o constrained fan-ins on OR plane

Autumn 2010 CSE370 - XI - Programmable Logic 20

Regular logic structures for two-level logic

ROM - full AND plane, general OR plane

o cheap (high-volume component)

o can implement any function of n inputs

o medium speed

PAL — programmable AND plane, fixed OR plane

o intermediate cost

o can implement functions limited by number of terms

o high speed (only one programmable plane that is much smaller than
ROM's decoder)

PLA — programmable AND and OR planes

o most expensive (most complex in design, need more sophisticated tools)

o can implement any function up to a product term limit

o slow (two programmable planes)

Autumn 2010 CSE370 - XI - Programmable Logic 21

Regular logic structures for multi-level logic

Difficult to devise a regular structure for arbitrary connections
between a large set of different types of gates
o efficiency/speed concerns for such a structure

o next we'll learn about field programmable gate arrays (FPGASs)
that are just such programmable multi-level structures

programmable multiplexers for wiring
lookup tables for logic functions (programming fills in the table)
multi-purpose cells (utilization is the big issue)
much more about these in CSE467
Alternative to FPGASs: use multiple levels of PALs/PLAs/ROMs
o output intermediate result
o make it an input to be used in further logic
o no longer practical approach given prevalence of FPGAs

Autumn 2010 CSE370 - XI - Programmable Logic 22

FPGAs in CSE370

UsB VGA
RS-232

Blasler Mic Line Line Vidso
InIn Out iy

75VDC Port
Power Supply Connector | I 1 1 T t
o, EEE

24-bit Audio CODEC ik ; <> P2 Port

po— Expansucn Header 2(JP2)
ith Voitage Protecion)
27Mhz Oscillator

50Mhz Oscilator — i ¥ Erpansion Hoader 1Y)

Altera USB Blaster
Contraller chipse!

Conﬁgnﬁlalfirci %Z(u:lsc'z | @ 3 Altera 90nm Cyclone Il
! iE FPGA with 20K LEs
RUNIPROG Swifch —

for JTAG/AS Modes |
§ =— 8D Card Connector

7-SEG Display Module —

10 Red LEDs & 8 Green LEDs
.+ SMA Extemal Clock
4 Push-button Switches

10 Toggle Swiches

BMbyle SDRAN 51zme SRAM Mbyte Flash Memory

I http://www.altera.com/products/devices/cyclone2/overview/cy2-overview.html I

Autumn 2010 CSE370 - XI - Programmable Logic

23

Cyclone II architecture

= Logic array blocks (LABs)
o 4-input lookup tables

IOEs

o MUXes for which you e
specify inputs (function)
= Routing rows and cols s
to interconnect LABs ~ Mutlers N
o also composed of MUXes
a] sglect settings determine oma| Lose - Logic Logic
wires between LABs and I/O Array Array Array Array
= Many more parts
o more later MK Blocks X L
= You will use synthesis tool
(compiler) to determine
programming from Verilog .
Autumn 2010 CSE370 - XI - Programmable Logic 24

