
Exam 1 Results

  Average = 78; Median = 81; StDev = 11.1 (68% within 67 and 89)

Autumn 2010 CSE370 - XI - Programmable Logic 1

0

10

20

30

40

50

60

70

80

90

#4

#3

#2

#1

Autumn 2010 CSE370 - XI - Programmable Logic 2

Implementation Technologies

  Standard gates (pretty much done)
  gate packages
  cell libraries

  Regular logic (we’ve been here)
  multiplexers
  decoders

  Two-level programmable logic (we are now here)
  PALs, PLAs, PLDs
  ROMs
  FPGAs

Autumn 2010 CSE370 - XI - Programmable Logic 3

• • •

inputs

AND
array

• • •

outputs

OR
array product

terms

Programmable logic arrays

  Pre-fabricated building block of many AND/OR gates
  actually NOR or NAND
  "personalized" by making/breaking connections among the gates
  programmable array block diagram for sum of products form

Autumn 2010 CSE370 - XI - Programmable Logic 4

example:
F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix 1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs
 term A B C F0 F1 F2 F3
AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1

reuse of terms

Enabling concept

  Shared product terms among outputs

Autumn 2010 CSE370 - XI - Programmable Logic 5

Before programming

  All possible connections are available before "programming"
  in reality, all AND and OR gates are NANDs

Autumn 2010 CSE370 - XI - Programmable Logic 6

A B C

F1 F2 F3 F0

AB

B'C

AC'

B'C'

A

After programming

  Unwanted connections are "blown"
  fuse (normally connected, break unwanted ones)
  anti-fuse (normally disconnected, make wanted connections)

Autumn 2010 CSE370 - XI - Programmable Logic 7

notation for implementing
F0 = A B + A' B'
F1 = C D' + C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate representation for high fan-in structures

  Short-hand notation so we don't have to draw all the wires
  signifies a connection is present and perpendicular signal is an

input to gate

Autumn 2010 CSE370 - XI - Programmable Logic 8

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable logic array example

  Multiple functions of A, B, C
  F1 = A B C
  F2 = A + B + C
  F3 = A' B' C'
  F4 = A' + B' + C'
  F5 = A xor B xor C
  F6 = A xnor B xnor C

Autumn 2010 CSE370 - XI - Programmable Logic 9

a given column of the OR array
has access to only a subset of

the possible product terms

PALs and PLAs

  Programmable logic array (PLA)
  what we've seen so far
  unconstrained fully-general AND and OR arrays

  Programmable array logic (PAL)
  constrained topology of the OR array
  innovation by Monolithic Memories
  faster and smaller OR plane

Autumn 2010 CSE370 - XI - Programmable Logic 10

minimized functions:

W = A + BD + BC
X = BC'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example

  BCD to Gray code converter

Autumn 2010 CSE370 - XI - Programmable Logic 11

not a particularly good
candidate for PAL/PLA

implementation since no terms
are shared among outputs

however, much more compact
and regular implementation

when compared with discrete
AND and OR gates

A B C D

minimized functions:

W = A + BD + BC
X = B C'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

PALs and PLAs: design example (cont’d)

  Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z

Autumn 2010 CSE370 - XI - Programmable Logic 12

4 product terms
per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: design example (cont’d)

  Code converter: programmed PAL

Autumn 2010 CSE370 - XI - Programmable Logic 13

W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

A A

D

D

D

\D

\D

PALs and PLAs: design example (cont’d)

  Code converter: NAND gate implementation
  loss or regularity, harder to understand
  harder to make changes

Autumn 2010 CSE370 - XI - Programmable Logic 14
EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: another design example

  Magnitude comparator
A B C D EQ NE LT GT

0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

minimized functions:
EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’ NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD GT = AC’ + ABC + BC’D’

Autumn 2010 CSE370 - XI - Programmable Logic 15

Activity

  Map the following functions to the PLA below:
  W = AB + A’C’ + BC’
  X = ABC + AB’ + A’B
  Y = ABC’ + BC + B’C’

A B C

W X Y

Autumn 2010 CSE370 - XI - Programmable Logic 16

Activity (cont’d)

  9 terms won’t fit in a 7 term PLA
  can apply concensus theorem

to W to simplify to:
W = AB + A’C’

  8 terms wont’ fit in a 7 term PLA
  observe that AB = ABC + ABC’
  can rewrite W to reuse terms:

W = ABC + ABC’ + A’C’
  Now it fits

  W = ABC + ABC’ + A’C’
  X = ABC + AB’ + A’B
  Y = ABC’ + BC + B’C’

  This is called technology mapping
  manipulating logic functions

so that they can use available
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y

Autumn 2010 CSE370 - XI - Programmable Logic 17

decoder

0 n-1

Address

2 -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through
resistor – selectively connected to 0
by word line controlled switches)

j

i

internal organization

word lines (only one
is active – decoder is
just right for this)

Read-only memories

  Two dimensional array of 1s and 0s
  entry (row) is called a "word"
  width of row = word-size
  index is called an "address"
  address is input
  selected word is output

Autumn 2010 CSE370 - XI - Programmable Logic 18

F0 = A' B' C + A B' C' + A B' C

F1 = A' B' C + A' B C' + A B C

F2 = A' B' C' + A' B' C + A B' C'

F3 = A' B C + A B' C' + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0 F1 F2 F3

ROMs and combinational logic

  Combinational logic implementation (two-level canonical form)
using a ROM

Autumn 2010 CSE370 - XI - Programmable Logic 19

ROM structure

  Similar to a PLA structure but with a fully decoded AND array
  completely flexible OR array (unlike PAL)

n address lines

• • •

inputs

decoder 2n word
lines

• • •

outputs

memory
array

(2n words
by m bits)

m data lines

Autumn 2010 CSE370 - XI - Programmable Logic 20

ROM vs. PLA

  ROM approach advantageous when
  design time is short (no need to minimize output functions)
  most input combinations are needed (e.g., code converters)
  little sharing of product terms among output functions

  ROM problems
  size doubles for each additional input
  can't exploit don't cares

  PLA approach advantageous when
  design tools are available for multi-output minimization
  there are relatively few unique minterm combinations
  many minterms are shared among the output functions

  PAL problems
  constrained fan-ins on OR plane

Autumn 2010 CSE370 - XI - Programmable Logic 21

Regular logic structures for two-level logic

  ROM – full AND plane, general OR plane
  cheap (high-volume component)
  can implement any function of n inputs
  medium speed

  PAL – programmable AND plane, fixed OR plane
  intermediate cost
  can implement functions limited by number of terms
  high speed (only one programmable plane that is much smaller than

ROM's decoder)
  PLA – programmable AND and OR planes

  most expensive (most complex in design, need more sophisticated tools)
  can implement any function up to a product term limit
  slow (two programmable planes)

Autumn 2010 CSE370 - XI - Programmable Logic 22

Regular logic structures for multi-level logic

  Difficult to devise a regular structure for arbitrary connections
between a large set of different types of gates
  efficiency/speed concerns for such a structure
  next we’ll learn about field programmable gate arrays (FPGAs)

that are just such programmable multi-level structures
  programmable multiplexers for wiring
  lookup tables for logic functions (programming fills in the table)
  multi-purpose cells (utilization is the big issue)
  much more about these in CSE467

  Alternative to FPGAs: use multiple levels of PALs/PLAs/ROMs
  output intermediate result
  make it an input to be used in further logic
  no longer practical approach given prevalence of FPGAs

FPGAs in CSE370

Autumn 2010 CSE370 - XI - Programmable Logic 23

http://www.altera.com/products/devices/cyclone2/overview/cy2-overview.html

Cyclone II architecture

  Logic array blocks (LABs)
  4-input lookup tables
  MUXes for which you

specify inputs (function)
  Routing rows and cols

to interconnect LABs
  also composed of MUXes
  select settings determine

wires between LABs and I/O
  Many more parts

  more later
  You will use synthesis tool

(compiler) to determine
programming from Verilog

Autumn 2010 CSE370 - XI - Programmable Logic 24

