
Exam 1 Results

  Average = 78; Median = 81; StDev = 11.1 (68% within 67 and 89)

Autumn 2010 CSE370 - XI - Programmable Logic 1

0

10

20

30

40

50

60

70

80

90

#4

#3

#2

#1

Autumn 2010 CSE370 - XI - Programmable Logic 2

Implementation Technologies

  Standard gates (pretty much done)
  gate packages
  cell libraries

  Regular logic (we’ve been here)
  multiplexers
  decoders

  Two-level programmable logic (we are now here)
  PALs, PLAs, PLDs
  ROMs
  FPGAs

Autumn 2010 CSE370 - XI - Programmable Logic 3

• • •

inputs

AND
array

• • •

outputs

OR
array product

terms

Programmable logic arrays

  Pre-fabricated building block of many AND/OR gates
  actually NOR or NAND
  "personalized" by making/breaking connections among the gates
  programmable array block diagram for sum of products form

Autumn 2010 CSE370 - XI - Programmable Logic 4

example:
F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix 1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs
 term A B C F0 F1 F2 F3
AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1

reuse of terms

Enabling concept

  Shared product terms among outputs

Autumn 2010 CSE370 - XI - Programmable Logic 5

Before programming

  All possible connections are available before "programming"
  in reality, all AND and OR gates are NANDs

Autumn 2010 CSE370 - XI - Programmable Logic 6

A B C

F1 F2 F3 F0

AB

B'C

AC'

B'C'

A

After programming

  Unwanted connections are "blown"
  fuse (normally connected, break unwanted ones)
  anti-fuse (normally disconnected, make wanted connections)

Autumn 2010 CSE370 - XI - Programmable Logic 7

notation for implementing
F0 = A B + A' B'
F1 = C D' + C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate representation for high fan-in structures

  Short-hand notation so we don't have to draw all the wires
  signifies a connection is present and perpendicular signal is an

input to gate

Autumn 2010 CSE370 - XI - Programmable Logic 8

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable logic array example

  Multiple functions of A, B, C
  F1 = A B C
  F2 = A + B + C
  F3 = A' B' C'
  F4 = A' + B' + C'
  F5 = A xor B xor C
  F6 = A xnor B xnor C

Autumn 2010 CSE370 - XI - Programmable Logic 9

a given column of the OR array
has access to only a subset of

the possible product terms

PALs and PLAs

  Programmable logic array (PLA)
  what we've seen so far
  unconstrained fully-general AND and OR arrays

  Programmable array logic (PAL)
  constrained topology of the OR array
  innovation by Monolithic Memories
  faster and smaller OR plane

Autumn 2010 CSE370 - XI - Programmable Logic 10

minimized functions:

W = A + BD + BC
X = BC'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example

  BCD to Gray code converter

Autumn 2010 CSE370 - XI - Programmable Logic 11

not a particularly good
candidate for PAL/PLA

implementation since no terms
are shared among outputs

however, much more compact
and regular implementation

when compared with discrete
AND and OR gates

A B C D

minimized functions:

W = A + BD + BC
X = B C'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

PALs and PLAs: design example (cont’d)

  Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z

Autumn 2010 CSE370 - XI - Programmable Logic 12

4 product terms
per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: design example (cont’d)

  Code converter: programmed PAL

Autumn 2010 CSE370 - XI - Programmable Logic 13

W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

A A

D

D

D

\D

\D

PALs and PLAs: design example (cont’d)

  Code converter: NAND gate implementation
  loss or regularity, harder to understand
  harder to make changes

Autumn 2010 CSE370 - XI - Programmable Logic 14
EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: another design example

  Magnitude comparator
A B C D EQ NE LT GT

0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

minimized functions:
EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’ NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD GT = AC’ + ABC + BC’D’

Autumn 2010 CSE370 - XI - Programmable Logic 15

Activity

  Map the following functions to the PLA below:
  W = AB + A’C’ + BC’
  X = ABC + AB’ + A’B
  Y = ABC’ + BC + B’C’

A B C

W X Y

Autumn 2010 CSE370 - XI - Programmable Logic 16

Activity (cont’d)

  9 terms won’t fit in a 7 term PLA
  can apply concensus theorem

to W to simplify to:
W = AB + A’C’

  8 terms wont’ fit in a 7 term PLA
  observe that AB = ABC + ABC’
  can rewrite W to reuse terms:

W = ABC + ABC’ + A’C’
  Now it fits

  W = ABC + ABC’ + A’C’
  X = ABC + AB’ + A’B
  Y = ABC’ + BC + B’C’

  This is called technology mapping
  manipulating logic functions

so that they can use available
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y

Autumn 2010 CSE370 - XI - Programmable Logic 17

decoder

0 n-1

Address

2 -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through
resistor – selectively connected to 0
by word line controlled switches)

j

i

internal organization

word lines (only one
is active – decoder is
just right for this)

Read-only memories

  Two dimensional array of 1s and 0s
  entry (row) is called a "word"
  width of row = word-size
  index is called an "address"
  address is input
  selected word is output

Autumn 2010 CSE370 - XI - Programmable Logic 18

F0 = A' B' C + A B' C' + A B' C

F1 = A' B' C + A' B C' + A B C

F2 = A' B' C' + A' B' C + A B' C'

F3 = A' B C + A B' C' + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0 F1 F2 F3

ROMs and combinational logic

  Combinational logic implementation (two-level canonical form)
using a ROM

Autumn 2010 CSE370 - XI - Programmable Logic 19

ROM structure

  Similar to a PLA structure but with a fully decoded AND array
  completely flexible OR array (unlike PAL)

n address lines

• • •

inputs

decoder 2n word
lines

• • •

outputs

memory
array

(2n words
by m bits)

m data lines

Autumn 2010 CSE370 - XI - Programmable Logic 20

ROM vs. PLA

  ROM approach advantageous when
  design time is short (no need to minimize output functions)
  most input combinations are needed (e.g., code converters)
  little sharing of product terms among output functions

  ROM problems
  size doubles for each additional input
  can't exploit don't cares

  PLA approach advantageous when
  design tools are available for multi-output minimization
  there are relatively few unique minterm combinations
  many minterms are shared among the output functions

  PAL problems
  constrained fan-ins on OR plane

Autumn 2010 CSE370 - XI - Programmable Logic 21

Regular logic structures for two-level logic

  ROM – full AND plane, general OR plane
  cheap (high-volume component)
  can implement any function of n inputs
  medium speed

  PAL – programmable AND plane, fixed OR plane
  intermediate cost
  can implement functions limited by number of terms
  high speed (only one programmable plane that is much smaller than

ROM's decoder)
  PLA – programmable AND and OR planes

  most expensive (most complex in design, need more sophisticated tools)
  can implement any function up to a product term limit
  slow (two programmable planes)

Autumn 2010 CSE370 - XI - Programmable Logic 22

Regular logic structures for multi-level logic

  Difficult to devise a regular structure for arbitrary connections
between a large set of different types of gates
  efficiency/speed concerns for such a structure
  next we’ll learn about field programmable gate arrays (FPGAs)

that are just such programmable multi-level structures
  programmable multiplexers for wiring
  lookup tables for logic functions (programming fills in the table)
  multi-purpose cells (utilization is the big issue)
  much more about these in CSE467

  Alternative to FPGAs: use multiple levels of PALs/PLAs/ROMs
  output intermediate result
  make it an input to be used in further logic
  no longer practical approach given prevalence of FPGAs

FPGAs in CSE370

Autumn 2010 CSE370 - XI - Programmable Logic 23

http://www.altera.com/products/devices/cyclone2/overview/cy2-overview.html

Cyclone II architecture

  Logic array blocks (LABs)
  4-input lookup tables
  MUXes for which you

specify inputs (function)
  Routing rows and cols

to interconnect LABs
  also composed of MUXes
  select settings determine

wires between LABs and I/O
  Many more parts

  more later
  You will use synthesis tool

(compiler) to determine
programming from Verilog

Autumn 2010 CSE370 - XI - Programmable Logic 24

