
Autumn 2010 CSE370 - XVI - Finite State Machines 1

Finite State Machines

  Finite State Machines (FSMs)
  general models for representing sequential circuits
  two principal types based on output behavior (Moore and Mealy)

  Basic sequential circuits revisited and cast as FSMs
  shift registers
  counters

  Design procedure for FSMs
  state diagrams
  state transition table
  next state functions
  potential optimizations

  Hardware description languages

Autumn 2010 CSE370 - XVI - Finite State Machines 2

Abstraction of state elements

  Divide circuit into combinational logic and state
  Localize the feedback loops and make it easy to break cycles
  Implementation of storage elements leads to various forms

of sequential logic

Combinational
Logic

Storage Elements

Outputs

State Outputs State Inputs

Inputs

Autumn 2010 CSE370 - XVI - Finite State Machines 3

Forms of sequential logic

  Asynchronous sequential logic – state changes occur whenever state
inputs change (seq. elements may be simple wires or delay elements)

  Synchronous sequential logic – state changes occur in lock step across
all storage elements (using a periodic waveform to trigger FFs)

Clock

Finite state machine representations

  States: determined by possible values in sequential storage elements
  Transitions: change of state
  Clock: controls when state can change by controlling storage elements
  Sequential logic

  transitions through a series of states
  which transitions are taken depends on values of input signals
  clock period defines elements of input sequence

Autumn 2010 CSE370 - XVI - Finite State Machines 4

In = 0

In = 1

In = 0 In = 1

100

010

110

111 001
In = 1

In = 0

In = X

In = X
010 001

1

0

Autumn 2010 CSE370 - XVI - Finite State Machines 5

Example finite state machine diagram

  5 states
  8 other transitions between states

  6 conditioned by input
  1 self-transition (on 0 from 001 to 001)
  2 independent of input (to/from 111)

  1 reset transition (from all states) to state 100
  represents 5 transitions (from each state to 100), one a self-arc
  simplifies condition on other transitions –all would include AND reset’)
  short-hand – rather than drawing a transition arc from each state

0

1

0 1

100

010

110

111 001
1

0

reset

Autumn 2010 CSE370 - XVI - Finite State Machines 6

010

100

110

011 001

000

101 111

3-bit up-counter

Counters are simple finite state machines

  Counters
  proceed through well-defined sequence of states (if enabled)

  Many types of counters: binary, BCD, Gray-code, etc….
  3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
  3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

Autumn 2010 CSE370 - XVI - Finite State Machines 7

Can any sequential system be represented with a
state diagram?

  Shift register
  input value shown

on transition arcs
  output values shown

within state node

100 110

111

011

101 010 000

001

1

1
1 0 1

1

1

1

0 0
0 1

0

0

0 0

D Q D Q D Q IN

OUT1 OUT2 OUT3

CLK

Autumn 2010 CSE370 - XVI - Finite State Machines 8

How do we turn a state diagram into logic?

  Counter
  3 flip-flops to hold state
  logic to compute next state
  clock signal controls when flip-flop memory can change

  wait long enough for combinational logic to compute new value
  though waiting too long is a waste of time

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

010

100

110

011 001

000

101 111

Autumn 2010 CSE370 - XVI - Finite State Machines 9

FSM design procedure

  We started with counters
  simple because the output is just its state
  simple because there is no input used to choose next state

  State diagram to state transition table
  tabular form of state diagram
  like a truth-table

  State encoding
  decide on representation of states
  for counters it is simple: just its value

  Implementation
  flip-flop for each state bit
  combinational logic based on encoding

Autumn 2010 CSE370 - XVI - Finite State Machines 10

010

100

110

011 001

000

101 111

3-bit up-counter

current state next state
0 000 001 1
1 001 010 2
2 010 011 3
3 011 100 4
4 100 101 5
5 101 110 6
6 110 111 7
7 111 000 0

FSM design procedure: state diagram to
encoded state transition table

  Tabular form of state diagram
  Like a truth-table (specify output for all input combinations)
  Encoding of states: easy for counters – just use value

Autumn 2010 CSE370 - XVI - Finite State Machines 11

C3 C2 C1 N3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

N1 <= C1’
 <= C1 xor 1

N2 <= C1C2’ + C1’C2
 <= C1 xor C2

N3 <= C1C2C3’ + C1’C3 + C2’C3
 <= (C1C2)C3’ + (C1’ + C2’)C3
 <= (C1C2)C3’ + (C1C2)’C3
 <= (C1C2) xor C3

Verilog notation to show
function represents an
input to D-FF

Implementation

  D flip-flop for each state bit
  Combinational logic based on state encoding

0 0

0 1

1 1

0 1 C1

C2

C3 N3

0 1

1 0

1 0

0 1 C1

C2

C3 N2

1 1

0 0

1 1

0 0 C1

C2

C3 N1

Autumn 2010 CSE370 - XVI - Finite State Machines 12

In C1 C2 C3 N1 N2 N3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

N1 <= In
N2 <= C1
N3 <= C2

Back to the shift register

  Input determines next state

100 110

111

011

101 010 000

001

0

1

1 1

1 1

1

1

0

0

0

0 0

1

0 0

D Q D Q D Q IN

OUT1 OUT2 OUT3

CLK

Autumn 2010 CSE370 - XVI - Finite State Machines 13

More complex counter example

  Complex counter
  repeats 5 states in sequence
  not a binary number representation

  Step 1: derive the state transition diagram
  count sequence: 000, 010, 011, 101, 110

  Step 2: derive the state transition table from the state transition diagram

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011

Autumn 2010 CSE370 - XVI - Finite State Machines 14

C+ <= A

B+ <= B’ + A’C’

A+ <= BC’

More complex counter example (cont’d)

  Step 3: K-maps for next state functions

0 0

X 1

0 X

X 1 A

B

C C+

1 1

X 0

0 X

X 1 A

B

C B+

0 1

X 1

0 X

X 0 A

B

C A+

Autumn 2010 CSE370 - XVI - Finite State Machines 15

Self-starting counters (cont’d)

  Re-deriving state transition table from don't care assignment

0 0

1 1

0 0

1 1 A

B

C C+

1 1

1 0

0 1

0 1 A

B

C B+

0 1

0 1

0 0

0 0 A

B

C A+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001 111

100

Autumn 2010 CSE370 - XVI - Finite State Machines 16

Self-starting counters

  Start-up states
  at power-up, counter may be in an unused or invalid state
  designer must guarantee that it (eventually) enters a valid state

  Self-starting solution
  design counter so that invalid states eventually transition to a valid state

  this may or may not be acceptable
  may limit exploitation of don't cares

implementation
on previous slide

010

000 110

101

011

001 111

100

010

000 110

101

011

001 111

100

Autumn 2010 CSE370 - XVI - Finite State Machines 17

Activity

  2-bit up-down counter (2 inputs)
  direction: D = 0 for up, D = 1 for down
  count: C = 0 for hold, C = 1 for count

01

00 11

10

S1 S0 C D N1 N0

Autumn 2010 CSE370 - XVI - Finite State Machines 18

Activity

  2-bit up-down counter (2 inputs)
  direction: D = 0 for up, D = 1 for down
  count: C = 0 for hold, C = 1 for count

01

00 11

10

C=0
D=X

C=0
D=X

C=0
D=X

C=0
D=X

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=1

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

Autumn 2010 CSE370 - XVI - Finite State Machines 19

Activity (cont’d)

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

N1 <= C’S1
 + CDS0’S1’ + CDS0S1
 + CD’S0S1’ + CD’S0’S1
 <= C’S1
 + C (D’ (S1 ⊕ S0) + D (S1 == S0))
 <= C’S1 + C (D ⊕ (S1 ⊕ S0))

N0 <= CS0’ + C’S0 0 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

D

S1

S0

C

0 0 1 1

0 0 1 1

1 0 1 0

0 1 0 1

D

S1

S0

C

Autumn 2010 CSE370 - XVI - Finite State Machines 20

Counter/shift-register model

  Values stored in registers represent the state of the circuit
  Combinational logic computes:

  next state
  function of current state and inputs

  outputs
  values of flip-flops

Inputs

Outputs

Next State

Current State

next state
logic

Autumn 2010 CSE370 - XVI - Finite State Machines 21

General state machine model

  Values stored in registers represent the state of the circuit
  Combinational logic computes:

  next state
  function of current state and inputs

  outputs
  function of current state and inputs (Mealy machine)
  function of current state only (Moore machine)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

Autumn 2010 CSE370 - XVI - Finite State Machines 22

State machine model (cont’d)

  States: S1, S2, ..., Sk

  Inputs: I1, I2, ..., Im

  Outputs: O1, O2, ..., On

  Transition function: Fs(Si, Ij)
  Output function: Fo(Si) or Fo(Si, Ij)

Inputs
Outputs

Next State

Current State

output
logic

next state
logic

Clock

Next State

State

0 1 2 3 4 5

Autumn 2010 CSE370 - XVI - Finite State Machines 23

Comparison of Mealy and Moore machines
(cont’d)

  Moore

  Mealy

  Synchronous Mealy

state feedback

inputs

outputs reg

combinational
logic for

next state logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

Autumn 2010 CSE370 - XVI - Finite State Machines 24

Comparison of Mealy and Moore machines

  Mealy machines tend to have less states
  outputs depend on arc taken from a state to another state (n2)

rather than just the state of the FSM (n)
  Moore machines are safer to use

  outputs change at next clock edge
  in Mealy machines, input change can cause async output change

(after prop delay of logic) – a BIG problem when two machines are
interconnected – asynchronous feedback may occur if one isn’t
careful (input to fsm1, changes output of fsm1, which is an input to
fsm2, whose output changes, and turns out to be input to fsm1)

  Mealy machines advantage? – they react faster to inputs
  react in same cycle – don't need to wait for clock
  in Moore machines, more logic may be necessary to decode state

into outputs that are needed – more gate delays after clock edge

Autumn 2010 CSE370 - XVI - Finite State Machines 25

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

 current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

Specifying outputs for a Moore machine

  Output is only function of state
  specify in state bubble in state diagram
  example: sequence detector for 01 or 10

Autumn 2010 CSE370 - XVI - Finite State Machines 26

 current next
reset input state state output
1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Specifying outputs for a Mealy machine

  Output is function of state and inputs
  specify output on transition arc between states
  example: sequence detector for 01 or 10

Autumn 2010 CSE370 - XVI - Finite State Machines 27

Synchronous Mealy machine (really Moore)

  Synchronous (or registered) Mealy machine
  state AND output FFs
  avoids ‘glitchy’ outputs (no hazards)
  easy to implement in programmable logic (function blocks + FF)

  Same as a Moore machine with no output decoding
  outputs computed on transition to next state rather than after entering state
  view outputs as expanded state vector – “output-encoded state”

Inputs
Outputs

Current State

output
logic

next state
logic

Autumn 2010 CSE370 - XVI - Finite State Machines 28

Tug-of-War Game FSM

  Tug of War game
  7 LEDS, 2 push buttons (LPB, RPB)

LED
(3)

LED
(2)

LED
(1)

LED
(0)

LED
(6)

LED
(5)

LED
(4)

RESET

R R

L

R

L

R

L

R

L L

Autumn 2010 CSE370 - XVI - Finite State Machines 29

Light Game FSM Verilog
module Light_Game (LEDS, LPB, RPB, CLK, RESET);

 input LPB ;
 input RPB ;
 input CLK ;
 input RESET;
 output [6:0] LEDS ;

 reg [6:0] position;
 reg left;
 reg right;

 always @(posedge CLK)
 begin
 left <= LPB;
 right <= RPB;
 if (RESET) position <= 7'b0001000;
 else if ((position == 7'b0000001) || (position == 7'b1000000)) ;
 else if (L) position <= position << 1;
 else if (R) position <= position >> 1;
 end

endmodule

 wire L, R;
 assign L = ~left && LPB;
 assign R = ~right && RPB;
 assign LEDS = position;

combinational logic and wires

sequential logic

LPB

left

L

positive edge detector

Do you see a problem with this game?

Activity

  Where is the problem? What is the fix?

Autumn 2010 CSE370 - XVI - Finite State Machines 30

always @(posedge CLK) begin
 left <= LPB;
 right <= RPB;
 if (RESET) position <= 7'b0001000;
 else if ((position == 7'b0000001) || (position == 7'b1000000))
 position <= position;
 else if (L) position <= position << 1;
 else if (R) position <= position >> 1;

end

always @(posedge CLK) begin // no longer biased in favor of L player
 left <= LPB;
 right <= RPB;
 if (RESET) position <= 7'b0001000;
 else if ((position == 7'b0000001) || (position == 7'b1000000))
 position <= position;
 else if (L & ~R) position <= position << 1; // correct error in state diag.
 else if (R & ~L) position <= position >> 1; // favoring L player
 else position <= position; // otherwise, just hold

Autumn 2010 CSE370 - XVI - Finite State Machines 31

Vending
Machine

FSM

N

D

Reset

Clock

Open Coin
Sensor

Release
Mechanism

Example: vending machine

  Release item after 15 cents are deposited
  Single coin slot for dimes, nickels
  No change

Autumn 2010 CSE370 - XVI - Finite State Machines 32

Example: vending machine (cont’d)

  Suitable abstract representation
  tabulate typical input sequences:

  3 nickels
  nickel, dime
  dime, nickel
  two dimes

  draw state diagram:
  inputs: N, D, reset
  output: open chute

  assumptions:
  assume N and D asserted

for one cycle
  each state has a self loop

for N = D = 0 (no coin)

S0

Reset

S2

D

S1

N

Autumn 2010 CSE370 - XVI - Finite State Machines 33

Example: vending machine (cont’d)

  Suitable abstract representation
  tabulate typical input sequences:

  3 nickels
  nickel, dime
  dime, nickel
  two dimes

  draw state diagram:
  inputs: N, D, reset
  output: open chute

  assumptions:
  assume N and D asserted

for one cycle
  each state has a self loop

for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

S8
[open]

D

S7
[open]

N

Autumn 2010 CSE370 - XVI - Finite State Machines 34

Activity: reuse states

  Redraw the state diagram using as few states as possible

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S5
[open]

N

S8
[open]

D

S7
[open]

N

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

Autumn 2010 CSE370 - XVI - Finite State Machines 35

Example: vending machine (cont’d)

  Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
 0¢ 0 0 0¢ 0

 0 1 5¢ 0
 1 0 10¢ 0
 1 1 – –

 5¢ 0 0 5¢ 0
 0 1 10¢ 0
 1 0 15¢ 0
 1 1 – –

10¢ 0 0 10¢ 0
 0 1 15¢ 0
 1 0 15¢ 0
 1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

Autumn 2010 CSE370 - XVI - Finite State Machines 36

present state inputs next state output
 Q1 Q0 D N D1 D0 open

 0 0 0 0 0 0 0
 0 1 0 1 0
 1 0 1 0 0
 1 1 – – –

 0 1 0 0 0 1 0
 0 1 1 0 0
 1 0 1 1 0
 1 1 – – –

 1 0 0 0 1 0 0
 0 1 1 1 0
 1 0 1 1 0
 1 1 – – –

 1 1 – – 1 1 1

Example: vending machine (cont’d)

  Uniquely encode states

Autumn 2010 CSE370 - XVI - Finite State Machines 37

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

Example: Moore implementation

  Mapping to logic 0 0 1 1

0 1 1 1

X X 1 X

1 1 1 1

Q1 D1

Q0

N
D

0 1 1 0

1 0 1 1

X X 1 X

0 1 1 1

Q1 D0

Q0

N
D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1 Open

Q0

N
D

Autumn 2010 CSE370 - XVI - Finite State Machines 38

Equivalent Mealy and Moore state diagrams

  Moore machine
  outputs associated with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

  Mealy machine
  outputs associated with transitions

Autumn 2010 CSE370 - XVI - Finite State Machines 39

Example: Mealy implementation

0¢

10¢

5¢

15¢

Reset/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0
present state inputs next state output

 Q1 Q0 D N D1 D0 open
 0 0 0 0 0 0 0

 0 1 0 1 0
 1 0 1 0 0
 1 1 – – –

 0 1 0 0 0 1 0
 0 1 1 0 0
 1 0 1 1 1
 1 1 – – –

 1 0 0 0 1 0 0
 0 1 1 1 1
 1 0 1 1 1
 1 1 – – –

 1 1 – – 1 1 1

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1 Open

Q0

N
D

Autumn 2010 CSE370 - XVI - Finite State Machines 40

Example: Mealy implementation

D0 = Q0’N + Q0N’ + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D

Autumn 2010 CSE370 - XVI - Finite State Machines 41

Vending machine: Moore to synch. Mealy
  OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in

Moore implementation
  This can be corrected by retiming, i.e., move flip-flops and logic through each

other to improve delay – pre-compute OPEN then store it in FF
  OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

 = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
  Implementation now looks like a synchronous Mealy machine

  another reason programmable devices have FF at end of logic

Autumn 2010 CSE370 - XVI - Finite State Machines 42

Vending machine: Mealy to synch. Mealy

  OPEN.d = Q1Q0 + Q1N + Q1D + Q0D
  OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

 = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
0 0 1 0

0 0 1 1

1 0 1 1

0 1 1 1

Q1 Open.d

Q0

N
D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1 Open.d

Q0

N
D

Autumn 2010 CSE370 - XVI - Finite State Machines 43

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)
D1 = reset'(Q1 + D + Q0N)
OPEN = Q1Q0

Vending machine example (Moore PLD mapping)

D Q

D Q

D Q

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset

Autumn 2010 CSE370 - XVI - Finite State Machines 44

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

Vending machine (synch. Mealy PLD mapping)

OPEN

D Q

D Q

D Q

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset

D0 = Q0D’N’
D1 = Q0N + Q1D’N’
D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3
OPEN = Q3

One-hot encoded transition table

 0 0 0 1 0 0 0 0 0 1 0
 0 1 0 0 1 0 0
 1 0 0 1 0 0 0
 1 1 – – – – –
 0 0 1 0 0 0 0 0 1 0 0
 0 1 0 1 0 0 0
 1 0 1 0 0 0 0
 1 1 – – – – –
 0 1 0 0 0 0 0 1 0 0 0
 0 1 1 0 0 0 0
 1 0 1 0 0 0 0
 1 1 – – – – –
 1 0 0 0 – – 1 0 0 0 1

present state inputs next state output
 Q3Q2Q1Q0 D N D3 D2D1D0 open

Autumn 2010 45 CSE370 - XVI - Finite State Machines

Designing from the state diagram

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

D' N'

D' N'

D' N'

1

D0 = Q0D’N’
D1 = Q0N + Q1D’N’
D2 = Q0D + Q1N + Q2D’N’

D3 = Q1D + Q2D + Q2N + Q3
OPEN = Q3

Autumn 2010 46 CSE370 - XVI - Finite State Machines

Output encoding

  Reuse outputs as state bits
  Why create new functions when you can use outputs?
  Bits from state assignments are the outputs for that state

  Take outputs directly from the flip-flops

  ad hoc - no tools
  Yields small circuits for most FSMs
  Fits nicely with synchronous Mealy machines

Autumn 2010 47 CSE370 - XVI - Finite State Machines

Autumn 2010 CSE370 - XVI - Finite State Machines 48

Mealy and Moore examples

  Recognize A,B = 0,1
  Mealy or Moore?

B
A out

Autumn 2010 CSE370 - XVI - Finite State Machines 49

Mealy and Moore examples (cont’d)

  Recognize A,B = 1,0 then 0,1
  Mealy or Moore?

Autumn 2010 CSE370 - XVI - Finite State Machines 50

Hardware Description Languages
and Sequential Logic

  Flip-flops
  representation of clocks - timing of state changes
  asynchronous vs. synchronous

  FSMs
  structural view (FFs separate from combinational logic)
  behavioral view (synthesis of sequencers – not in this course)

  Data-paths = data computation (e.g., ALUs, comparators) +
registers
  use of arithmetic/logical operators
  control of storage elements

Autumn 2010 CSE370 - XVI - Finite State Machines 51

Example: reduce-1-string-by-1

  Remove one 1 from every string of 1s on the input (a filter)
  E.g., 00011100 -> 00001100; 00100110 -> 00000010

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/0 0/0

0/0

1/1

zero

one1

Moore Mealy

Autumn 2010 CSE370 - XVI - Finite State Machines 52

module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;

 parameter zero = 2’b00; 
 parameter one1 = 2’b01; 
 parameter two1s = 2’b10; 

 reg out;
 reg [2:1] state; // state variables
 reg [2:1] next_state;

 always @(posedge clk)
 if (reset) state = zero;
 else state = next_state;

state assignment
(easy to change,
if in one place)

Verilog FSM - Reduce 1s example

  Moore machine

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

Autumn 2010 CSE370 - XVI - Finite State Machines 53

 always @(in or state)

 case (state)
 zero:

 // last input was a zero
 begin
 if (in) next_state = one1;
 else next_state = zero;
 end

 one1:
 // we've seen one 1
 begin
 if (in) next_state = two1s;
 else next_state = zero;
 end

 two1s:
 // we've seen at least 2 ones
 begin
 if (in) next_state = two1s;
 else next_state = zero;
 end

 endcase

crucial to include
all signals that are
input to state determination

Moore Verilog FSM (cont’d)

note that output
depends only on state

 always @(state)
 case (state)
 zero: out = 0;

 one1: out = 0;
 two1s: out = 1;

 endcase

endmodule

Autumn 2010 CSE370 - XVI - Finite State Machines 54

module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;
 reg out;
 reg state; // state variables
 reg next_state;

 always @(posedge clk)
 if (reset) state = zero;
 else state = next_state;

 always @(in or state)
 case (state)
 zero: // last input was a zero

 begin
 out = 0;
 if (in) next_state = one;
 else next_state = zero;
 end

 one: // we've seen one 1
 if (in) begin
 next_state = one; out = 1;
 end else begin
 next_state = zero; out = 0;
 end

 endcase
endmodule

Mealy Verilog FSM

1/0 0/0

0/0

1/1

zero

one1

Autumn 2010 CSE370 - XVI - Finite State Machines 55

module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;
 reg out;
 reg state; // state variables

 always @(posedge clk)
 if (reset) state = zero;
 else
 case (state)
 zero: // last input was a zero

 begin
 out = 0;
 if (in) state = one;
 else state = zero;
 end

 one: // we've seen one 1
 if (in) begin
 state = one; out = 1;
 end else begin
 state = zero; out = 0;
 end

 endcase
endmodule

Synchronous Mealy Machine

Autumn 2010 CSE370 - XVI - Finite State Machines 56

Finite state machines summary

  Models for representing sequential circuits
  abstraction of sequential elements
  finite state machines and their state diagrams
  inputs/outputs
  Mealy, Moore, and synchronous Mealy machines

  Finite state machine design procedure
  deriving state diagram
  deriving state transition table
  determining next state and output functions
  implementing combinational logic

  Hardware description languages

