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Finite State Machines 

  Finite State Machines (FSMs) 
  general models for representing sequential circuits 
  two principal types based on output behavior (Moore and Mealy) 

  Basic sequential circuits revisited and cast as FSMs 
  shift registers 
  counters 

  Design procedure for FSMs 
  state diagrams 
  state transition table 
  next state functions 
  potential optimizations 

  Hardware description languages 
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Abstraction of state elements 

  Divide circuit into combinational logic and state 
  Localize the feedback loops and make it easy to break cycles 
  Implementation of storage elements leads to various forms 

of sequential logic 

Combinational 
Logic 

Storage Elements 

Outputs 

State Outputs State Inputs 

Inputs 
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Forms of sequential logic 

  Asynchronous sequential logic – state changes occur whenever state 
inputs change (seq. elements may be simple wires or delay elements) 

  Synchronous sequential logic – state changes occur in lock step across 
all storage elements (using a periodic waveform to trigger FFs) 

Clock 

Finite state machine representations 

  States: determined by possible values in sequential storage elements 
  Transitions: change of state 
  Clock: controls when state can change by controlling storage elements 
  Sequential logic 

  transitions through a series of states 
  which transitions are taken depends on values of input signals 
  clock period defines elements of input sequence  
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Example finite state machine diagram 

  5 states 
  8 other transitions between states 

  6 conditioned by input 
  1 self-transition (on 0 from 001 to 001) 
  2 independent of input (to/from 111) 

  1 reset transition (from all states) to state 100 
  represents 5 transitions (from each state to 100), one a self-arc 
  simplifies condition on other transitions –all would include AND reset’ ) 
  short-hand – rather than drawing a transition arc from each state 
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0 

reset 
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010 
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011 001 
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3-bit up-counter 

Counters are simple finite state machines 

  Counters 
  proceed through well-defined sequence of states (if enabled) 

  Many types of counters: binary, BCD, Gray-code, etc…. 
  3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ... 
  3-bit down-counter:  111, 110, 101, 100, 011, 010, 001, 000, 111, ... 
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Can any sequential system be represented with a 
state diagram? 

  Shift register 
  input value shown 

on transition arcs 
  output values shown 

within state node 
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How do we turn a state diagram into logic? 

  Counter 
  3 flip-flops to hold state 
  logic to compute next state 
  clock signal controls when flip-flop memory can change 

  wait long enough for combinational logic to compute new value 
  though waiting too long is a waste of time 
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FSM design procedure 

  We started with counters 
  simple because the output is just its state 
  simple because there is no input used to choose next state  

  State diagram to state transition table 
  tabular form of state diagram 
  like a truth-table 

  State encoding 
  decide on representation of states 
  for counters it is simple: just its value 

  Implementation 
  flip-flop for each state bit 
  combinational logic based on encoding 
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010 

100 

110 

011 001 

000 

101 111 

3-bit up-counter 

current state    next state 
0  000   001  1 
1  001   010  2 
2  010   011  3 
3  011   100  4 
4  100   101  5 
5  101   110  6 
6  110   111  7 
7  111   000  0 

FSM design procedure: state diagram to 
encoded state transition table 

  Tabular form of state diagram 
  Like a truth-table (specify output for all input combinations) 
  Encoding of states: easy for counters – just use value 
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C3  C2  C1  N3  N2  N1 
0  0  0  0  0  1 
0  0  1  0  1  0 
0  1  0  0  1  1 
0  1  1  1  0  0 
1  0  0  1  0  1 
1  0  1  1  1  0 
1  1  0  1  1  1 
1  1  1  0  0  0 

N1  <= C1’ 
 <= C1 xor 1 

N2  <= C1C2’ + C1’C2 
 <= C1 xor C2 

N3  <= C1C2C3’ + C1’C3 + C2’C3 
 <= (C1C2)C3’ + (C1’ + C2’)C3 
 <= (C1C2)C3’ + (C1C2)’C3 
 <= (C1C2) xor C3 

Verilog notation to show 
function represents an  
input to D-FF 

Implementation 

  D flip-flop for each state bit 
  Combinational logic based on state encoding 

0  0 
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1  1 
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C2 
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1  1 

0  0 

1  1 

0  0 C1 
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In  C1  C2  C3  N1  N2  N3 
0  0  0  0  0  0  0 
0  0  0  1  0  0  0 
0  0  1  0  0  0  1 
0  0  1  1  0  0  1 
0  1  0  0  0  1  0 
0  1  0  1  0  1  0 
0  1  1  0  0  1  1 
0  1  1  1  0  1  1 
1  0  0  0  1  0  0 
1  0  0  1  1  0  0 
1  0  1  0  1  0  1 
1  0  1  1  1  0  1 
1  1  0  0  1  1  0 
1  1  0  1  1  1  0 
1  1  1  0  1  1  1 
1  1  1  1  1  1  1 

N1  <= In 
N2  <= C1 
N3  <= C2 

Back to the shift register 

  Input determines next state 
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More complex counter example 

  Complex counter 
  repeats 5 states in sequence 
  not a binary number representation 

  Step 1: derive the state transition diagram 
  count sequence: 000, 010, 011, 101, 110 

  Step 2: derive the state transition table from the state transition diagram 

Present State  Next State 
C  B  A  C+  B+  A+ 
0  0  0  0  1  0 
0  0  1  –  –  – 
0  1  0  0  1  1 
0  1  1  1  0  1 
1  0  0  –  –  – 
1  0  1  1  1  0 
1  1  0  0  0  0 
1  1  1  –  –  – 

note the don't care conditions that arise from the unused state codes 

010 

000 110 

101 

011 
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C+ <= A 

B+ <= B’ + A’C’ 

A+ <= BC’ 

More complex counter example (cont’d) 

  Step 3: K-maps for next state functions 
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Self-starting counters (cont’d) 

  Re-deriving state transition table from don't care assignment 

0  0 

1  1 

0  0 

1  1 A 

B 

C C+ 

1  1 

1  0 

0  1 

0  1 A 

B 

C B+ 

0  1 

0  1 

0  0 

0  0 A 

B 

C A+ 

Present State  Next State 
C  B  A  C+  B+  A+ 
0  0  0  0  1  0 
0  0  1  1  1  0 
0  1  0  0  1  1 
0  1  1  1  0  1 
1  0  0  0  1  0 
1  0  1  1  1  0 
1  1  0  0  0  0 
1  1  1  1  0  0 

010 

000 110 

101 

011 

001 111 

100 
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Self-starting counters 

  Start-up states 
  at power-up, counter may be in an unused or invalid state 
  designer must guarantee that it (eventually) enters a valid state 

  Self-starting solution 
  design counter so that invalid states eventually transition to a valid state 

  this may or may not be acceptable 
  may limit exploitation of don't cares 

implementation 
on previous slide 
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Activity 

  2-bit up-down counter (2 inputs) 
  direction: D = 0 for up, D = 1 for down 
  count: C = 0  for hold, C = 1 for count 

01 

00 11 

10 

S1  S0  C  D  N1  N0 
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Activity 

  2-bit up-down counter (2 inputs) 
  direction: D = 0 for up, D = 1 for down 
  count: C = 0  for hold, C = 1 for count 

01 

00 11 

10 

C=0 
D=X 

C=0 
D=X 

C=0 
D=X 

C=0 
D=X 

C=1 
D=0 

C=1 
D=0 

C=1 
D=0 

C=1 
D=0 

C=1 
D=1 

S1  S0  C  D  N1  N0 
0  0  0  0  0  0 
0  0  0  1  0  0 
0  0  1  0  0  1 
0  0  1  1  1  1 
0  1  0  0  0  1 
0  1  0  1  0  1 
0  1  1  0  1  0 
0  1  1  1  0  0 
1  0  0  0  1  0 
1  0  0  1  1  0 
1  0  1  0  1  1 
1  0  1  1  0  1 
1  1  0  0  1  1 
1  1  0  1  1  1 
1  1  1  0  0  0 
1  1  1  1  1  0 
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Activity (cont’d) 

S1  S0  C  D  N1  N0 
0  0  0  0  0  0 
0  0  0  1  0  0 
0  0  1  0  0  1 
0  0  1  1  1  1 
0  1  0  0  0  1 
0  1  0  1  0  1 
0  1  1  0  1  0 
0  1  1  1  0  0 
1  0  0  0  1  0 
1  0  0  1  1  0 
1  0  1  0  1  1 
1  0  1  1  0  1 
1  1  0  0  1  1 
1  1  0  1  1  1 
1  1  1  0  0  0 
1  1  1  1  1  0 

N1 <= C’S1 
           + CDS0’S1’ + CDS0S1 
           + CD’S0S1’ + CD’S0’S1 
     <= C’S1 
           + C (D’ (S1 ⊕ S0) + D (S1 == S0) ) 
     <= C’S1 + C (D ⊕ (S1 ⊕ S0) ) 

N0 <= CS0’ + C’S0 0    1    1    0 

0    1    1    0  

1    0    0    1 

1    0    0     1  

D 

S1 

S0 

C

0    0    1    1 

0    0    1    1  

1    0    1    0 

0    1    0     1  

D 

S1 

S0 

C

Autumn 2010 CSE370 - XVI - Finite State Machines 20 

Counter/shift-register model 

  Values stored in registers represent the state of the circuit 
  Combinational logic computes: 

  next state 
  function of current state and inputs 

  outputs 
  values of flip-flops 

Inputs 

Outputs 

Next State 

Current State 

next state 
logic 
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General state machine model 

  Values stored in registers represent the state of the circuit 
  Combinational logic computes: 

  next state 
  function of current state and inputs 

  outputs 
  function of current state and inputs (Mealy machine) 
  function of current state only (Moore machine) 

Inputs 
Outputs 

Next State 

Current State 

output 
logic 

next state 
logic 
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State machine model (cont’d) 

  States: S1, S2, ..., Sk 

  Inputs: I1, I2, ..., Im 

  Outputs: O1, O2, ..., On 

  Transition function: Fs(Si, Ij) 
  Output function: Fo(Si) or Fo(Si, Ij) 

Inputs 
Outputs 

Next State 

Current State 

output 
logic 

next state 
logic 

Clock 

Next State 

State 

0 1 2 3 4 5 
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Comparison of Mealy and Moore machines 
(cont’d) 

  Moore 

  Mealy 

  Synchronous Mealy 

state feedback 

inputs 

outputs reg 

combinational  
logic for  

next state logic for 
outputs 

inputs outputs 

state feedback 

reg 
combinational  

logic for 
next state 

logic for 
outputs 

inputs outputs 

state feedback 

reg 
combinational  

logic for 
next state 

logic for 
outputs 
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Comparison of Mealy and Moore machines 

  Mealy machines tend to have less states 
  outputs depend on arc taken from a state to another state (n2) 

rather than just the state of the FSM (n)  
  Moore machines are safer to use 

  outputs change at next clock edge 
  in Mealy machines, input change can cause async output change 

(after prop delay of logic) – a BIG problem when two machines are 
interconnected – asynchronous feedback may occur if one isn’t 
careful (input to fsm1, changes output of fsm1, which is an input to 
fsm2, whose output changes, and turns out to be input to fsm1) 

  Mealy machines advantage? – they react faster to inputs 
  react in same cycle – don't need to wait for clock 
  in Moore machines, more logic may be necessary to decode state 

into outputs that are needed – more gate delays after clock edge 



Autumn 2010 CSE370 - XVI - Finite State Machines 25 

D/1 

E/1 

B/0 

A/0 

C/0 

1 

0 

0 

0 
0 

1 

1 

1 

1 

0 

reset 

  current  next   
reset  input  state  state  output 
1  –  –  A   
0  0  A  B  0 
0  1  A  C  0 
0  0  B  B  0 
0  1  B  D  0 
0  0  C  E  0 
0  1  C  C  0 
0  0  D  E  1 
0  1  D  C  1 
0  0  E  B  1 
0  1  E  D  1 

Specifying outputs for a Moore machine 

  Output is only function of state 
  specify in state bubble in state diagram 
  example: sequence detector for 01 or 10 
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  current  next   
reset  input  state  state  output 
1  –  –  A  0 
0  0  A  B  0 
0  1  A  C  0 
0  0  B  B  0 
0  1  B  C  1 
0  0  C  B  1 
0  1  C  C  0 

B 

A 

C 

0/1 

0/0 

0/0 

1/1 

1/0 

1/0 

reset/0 

Specifying outputs for a Mealy machine 

  Output is function of state and inputs 
  specify output on transition arc between states 
  example: sequence detector for 01 or 10 
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Synchronous Mealy machine (really Moore) 

  Synchronous (or registered) Mealy machine 
  state AND output FFs 
  avoids ‘glitchy’ outputs (no hazards) 
  easy to implement in programmable logic (function blocks + FF) 

  Same as a Moore machine with no output decoding 
  outputs computed on transition to next state rather than after entering state 
  view outputs as expanded state vector – “output-encoded state” 

Inputs 
Outputs 

Current State 

output 
logic 

next state 
logic 
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Tug-of-War Game FSM 

  Tug of War game 
  7 LEDS, 2 push buttons (LPB, RPB) 

LED 
(3) 

LED 
(2) 

LED 
(1) 

LED 
(0) 

LED 
(6) 

LED 
(5) 

LED 
(4) 

RESET 

R R 

L 

R 

L 

R 

L 

R 

L L 
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Light Game FSM Verilog 
module Light_Game (LEDS, LPB, RPB, CLK, RESET); 

 input LPB ; 
 input RPB ; 
 input CLK ; 
 input RESET; 
 output [6:0] LEDS ; 

 reg [6:0] position; 
 reg left; 
 reg right; 

 always @(posedge CLK) 
  begin   
       left <= LPB; 
       right <= RPB; 
       if (RESET) position <= 7'b0001000;   
       else if ((position == 7'b0000001) || (position == 7'b1000000)) ; 
       else if (L) position <= position << 1; 
       else if (R) position <= position >> 1;  
  end 

endmodule 

   wire L, R; 
 assign L = ~left && LPB; 
 assign R = ~right && RPB; 
 assign LEDS = position; 

combinational logic and wires 

sequential logic 

LPB 

left 

L 

positive edge detector 

Do you see a problem with this game? 

Activity 

  Where is the problem? What is the fix? 
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always @(posedge CLK) begin   
 left <= LPB; 
 right <= RPB; 
 if (RESET) position <= 7'b0001000; 
 else if ( (position == 7'b0000001) || (position == 7'b1000000) ) 
             position <= position; 
 else if (L) position <= position << 1; 
 else if (R) position <= position >> 1;  

end 

always @(posedge CLK) begin  // no longer biased in favor of L player 
 left <= LPB; 
 right <= RPB; 
 if (RESET) position <= 7'b0001000; 
 else if ( (position == 7'b0000001) || (position == 7'b1000000) ) 
                  position <= position; 
 else if (L & ~R) position <= position << 1; // correct error in state diag. 
 else if (R & ~L) position <= position >> 1; // favoring L player 
 else             position <= position;      // otherwise, just hold 
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Vending 
Machine 

FSM 

N 

D 

Reset 

Clock 

Open Coin 
Sensor 

Release 
Mechanism 

Example: vending machine 

  Release item after 15 cents are deposited 
  Single coin slot for dimes, nickels 
  No change 
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Example: vending machine (cont’d) 

  Suitable abstract representation 
  tabulate typical input sequences: 

  3 nickels 
  nickel, dime 
  dime, nickel 
  two dimes 

  draw state diagram: 
  inputs: N, D, reset 
  output: open chute 

  assumptions: 
  assume N and D asserted 

for one cycle 
  each state has a self loop 

for N = D = 0 (no coin) 

S0 

Reset 

S2 

D 

S1 

N 
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Example: vending machine (cont’d) 

  Suitable abstract representation 
  tabulate typical input sequences: 

  3 nickels 
  nickel, dime 
  dime, nickel 
  two dimes 

  draw state diagram: 
  inputs: N, D, reset 
  output: open chute 

  assumptions: 
  assume N and D asserted 

for one cycle 
  each state has a self loop 

for N = D = 0 (no coin) 

S0 

Reset 

S2 

D 

S6 
[open] 

D 

S4 
[open] 

D 

S1 

N 

S3 

N 

S5 
[open] 

N 

S8 
[open] 

D 

S7 
[open] 

N 
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Activity: reuse states 

  Redraw the state diagram using as few states as possible 

S0 

Reset 

S2 

D 

S6 
[open] 

D 

S4 
[open] 

D 

S1 

N 

S3 

N 

S5 
[open] 

N 

S8 
[open] 

D 

S7 
[open] 

N 

0¢ 

Reset 

5¢ 

N 

N 

N + D 

10¢ 

D 

15¢ 
[open] 

D 
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Example: vending machine (cont’d) 

  Minimize number of states - reuse states whenever possible 

symbolic state table 

present  inputs  next  output 
state  D  N  state  open 
  0¢   0  0    0¢  0 

  0  1    5¢  0 
  1  0  10¢  0 
  1  1  –  – 

  5¢   0  0    5¢  0 
  0  1  10¢  0 
  1  0  15¢  0 
  1  1  –  – 

10¢   0  0  10¢  0 
  0  1  15¢  0 
  1  0  15¢  0 
  1  1  –  – 

15¢   –  –  15¢  1 

0¢ 

Reset 

5¢ 

N 

N 

N + D 

10¢ 

D 

15¢ 
[open] 

D 
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present state  inputs  next state  output 
 Q1 Q0  D  N   D1  D0  open 

   0  0  0  0    0  0  0 
   0  1   0  1  0 
   1  0   1  0  0 
   1  1   –  –  – 

   0  1  0  0    0  1  0 
   0  1   1  0  0 
   1  0   1  1  0 
   1  1   –  –  – 

   1  0  0  0    1  0  0 
   0  1   1  1  0 
   1  0   1  1  0 
   1  1   –  –  – 

   1  1  –  –    1  1  1 

Example: vending machine (cont’d) 

  Uniquely encode states 
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D1 = Q1 + D + Q0 N 

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D 

OPEN = Q1 Q0 

Example: Moore implementation 

  Mapping to logic 0  0  1  1 

0  1  1  1 

X  X  1  X 

1  1  1  1 

Q1 D1 

Q0 

N 
D 

0  1  1  0 

1  0  1  1 

X  X  1  X 

0  1  1  1 

Q1 D0 

Q0 

N 
D 

0  0  1  0 

0  0  1  0 

X  X  1  X 

0  0  1  0 

Q1 Open 

Q0 

N 
D 
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Equivalent Mealy and Moore state diagrams 

  Moore machine 
  outputs associated with state 

0¢ 
[0] 

10¢ 
[0] 

5¢ 
[0] 

15¢ 
[1] 

N’ D’ + Reset 

D 

D 

N 

N+D 

N 

N’ D’ 

Reset’ 

N’ D’ 

N’ D’ 

Reset 

0¢ 

10¢ 

5¢ 

15¢ 

(N’ D’ + Reset)/0 

D/0 

D/1 

N/0 

N+D/1 

N/0 

N’ D’/0 

Reset’/1 

N’ D’/0 

N’ D’/0 

Reset/0 

  Mealy machine 
  outputs associated with transitions 
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Example: Mealy implementation 

0¢ 

10¢ 

5¢ 

15¢ 

Reset/0 

D/0 

D/1 

N/0 

N+D/1 

N/0 

N’ D’/0 

Reset’/1 

N’ D’/0 

N’ D’/0 

Reset/0 
present state  inputs  next state  output 

 Q1 Q0  D  N   D1  D0  open 
   0  0  0  0    0  0  0 

   0  1   0  1  0 
   1  0   1  0  0 
   1  1   –  –  – 

   0  1  0  0    0  1  0 
   0  1   1  0  0 
   1  0   1  1  1 
   1  1   –  –  – 

   1  0  0  0    1  0  0 
   0  1   1  1  1 
   1  0   1  1  1 
   1  1   –  –  – 

   1  1  –  –    1  1  1 

D0  = Q0’N + Q0N’ + Q1N + Q1D 
D1  = Q1 + D + Q0N 
OPEN  = Q1Q0 + Q1N + Q1D + Q0D 

0  0  1  0 

0  0  1  1 

X  X  1  X 

0  1  1  1 

Q1 Open 

Q0 

N 
D 
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Example: Mealy implementation 

D0  = Q0’N + Q0N’ + Q1N + Q1D 
D1  = Q1 + D + Q0N 
OPEN  = Q1Q0 + Q1N + Q1D + Q0D 
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Vending machine: Moore to synch. Mealy 
  OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in 

Moore implementation 
  This can be corrected by retiming, i.e., move flip-flops and logic through each 

other to improve delay – pre-compute OPEN then store it in FF 
  OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D) 

      = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D 
  Implementation now looks like a synchronous Mealy machine 

  another reason programmable devices have FF at end of logic 
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Vending machine: Mealy to synch. Mealy 

  OPEN.d = Q1Q0 + Q1N + Q1D + Q0D  
  OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D) 

      = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D 
0  0  1  0 

0  0  1  1 

1  0  1  1 

0  1  1  1 

Q1 Open.d 

Q0 

N 
D 

0  0  1  0 

0  0  1  1 

X  X  1  X 

0  1  1  1 

Q1 Open.d 

Q0 

N 
D 
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D0  = reset'(Q0'N + Q0N' + Q1N + Q1D) 
D1  = reset'(Q1 + D + Q0N) 
OPEN  = Q1Q0 

Vending machine example (Moore PLD mapping) 

D Q 

D Q 

D Q 

Q0 

Q1 

Open 

Com 

Seq 

Seq 

CLK 

N 

D 

Reset 
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OPEN  = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D) 

Vending machine (synch. Mealy PLD mapping) 

OPEN 

D Q 

D Q 

D Q 

Q0 

Q1 

Open 

Seq 

Seq 

Seq 

CLK 

N 

D 

Reset 



D0 = Q0D’N’ 
D1 = Q0N + Q1D’N’ 
D2 = Q0D + Q1N + Q2D’N’ 

D3 = Q1D + Q2D + Q2N + Q3 
OPEN = Q3 

One-hot encoded transition table 

 0  0  0  1  0  0  0  0  0  1     0 
      0  1  0  0  1  0     0 
      1  0  0  1  0  0     0 
      1  1  –  –  –  –     –  
 0  0  1  0  0  0  0  0  1  0     0 
      0  1  0  1  0  0     0 
      1  0  1  0  0  0     0 
      1  1     –  –  –  –     –  
 0  1  0  0  0  0  0  1  0  0     0 
      0  1  1  0  0  0     0 
      1  0  1  0  0  0     0 
      1  1  –  –  –  –     –  
 1  0  0  0     –  –  1  0  0  0     1 

present state inputs  next state   output 
   Q3Q2Q1Q0   D  N    D3 D2D1D0    open 
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Designing from the state diagram 

0¢ 

Reset 

5¢ 

N 

N 

N + D 

10¢ 

D 

15¢ 
[open] 

D 

D' N' 

D' N' 

D' N' 

1 

D0 = Q0D’N’ 
D1 = Q0N + Q1D’N’ 
D2 = Q0D + Q1N + Q2D’N’ 

D3 = Q1D + Q2D + Q2N + Q3 
OPEN = Q3 
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Output encoding 

  Reuse outputs as state bits 
  Why create new functions when you can use outputs? 
  Bits from state assignments are the outputs for that state 

  Take outputs directly from the flip-flops 

  ad hoc - no tools 
  Yields small circuits for most FSMs 
  Fits nicely with synchronous Mealy machines 

Autumn 2010 47 CSE370 - XVI - Finite State Machines 

Autumn 2010 CSE370 - XVI - Finite State Machines 48 

Mealy and Moore examples 

  Recognize A,B = 0,1 
  Mealy or Moore? 

B 
A out 
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Mealy and Moore examples (cont’d) 

  Recognize A,B = 1,0 then 0,1 
  Mealy or Moore? 
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Hardware Description Languages  
and Sequential Logic 

  Flip-flops 
  representation of clocks - timing of state changes 
  asynchronous vs. synchronous 

  FSMs 
  structural view (FFs separate from combinational logic) 
  behavioral view (synthesis of sequencers – not in this course) 

  Data-paths = data computation (e.g., ALUs, comparators) + 
registers 
  use of arithmetic/logical operators 
  control of storage elements 
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Example: reduce-1-string-by-1 

  Remove one 1 from every string of 1s on the input (a filter) 
  E.g., 00011100 -> 00001100;   00100110 -> 00000010 

1 

0 

0 

0 

1 
1 

zero 
[0] 

one1 
[0] 

two1s 
[1] 

1/0 0/0 

0/0 

1/1 

zero 

one1 

Moore Mealy 
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module reduce (clk, reset, in, out); 
  input clk, reset, in; 
  output out; 

  parameter zero  = 2’b00; 
  parameter one1  = 2’b01; 
  parameter two1s = 2’b10; 

  reg out; 
  reg [2:1] state;  // state variables 
  reg [2:1] next_state; 

  always @(posedge clk) 
    if (reset) state = zero; 
    else       state = next_state; 

state assignment 
(easy to change, 
if in one place) 

Verilog FSM - Reduce 1s example 

  Moore machine 

1 

0 

0 

0 

1 
1 

zero 
[0] 

one1 
[0] 

two1s 
[1] 
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  always @(in or state) 

    case (state) 
      zero:   

 // last input was a zero 
  begin 
    if (in) next_state = one1; 
    else    next_state = zero; 
  end 

      one1:   
 // we've seen one 1 
  begin 
    if (in) next_state = two1s; 
    else    next_state = zero; 
  end 

      two1s:  
 // we've seen at least 2 ones 
  begin 
    if (in) next_state = two1s; 
    else    next_state = zero; 
  end 

    endcase 

crucial to include  
all signals that are  
input to state determination 

Moore Verilog FSM (cont’d) 

note that output  
depends only on state 

  always @(state) 
    case (state) 
      zero: out = 0; 

   one1: out = 0; 
  two1s: out = 1; 

    endcase 

endmodule 
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module reduce (clk, reset, in, out); 
  input clk, reset, in; 
  output out; 
  reg out; 
  reg state; // state variables 
  reg next_state; 

  always @(posedge clk) 
    if (reset) state = zero; 
    else       state = next_state; 

  always @(in or state) 
    case (state) 
      zero:   // last input was a zero 

  begin 
    out = 0; 
    if (in) next_state = one; 
    else    next_state = zero; 
  end 

      one:   // we've seen one 1 
  if (in) begin 
  next_state = one; out = 1; 
  end else begin 
  next_state = zero; out = 0; 
  end 

    endcase 
endmodule 

Mealy Verilog FSM 

1/0 0/0 

0/0 

1/1 

zero 

one1 
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module reduce (clk, reset, in, out); 
  input clk, reset, in; 
  output out; 
  reg out; 
  reg state; // state variables 

  always @(posedge clk) 
    if (reset) state = zero; 
    else  
     case (state) 
      zero:   // last input was a zero 

  begin 
    out = 0; 
    if (in) state = one; 
    else    state = zero; 
  end 

      one:   // we've seen one 1 
  if (in) begin 
  state = one; out = 1; 
  end else begin 
  state = zero; out = 0; 
  end 

    endcase 
endmodule 

Synchronous Mealy Machine 
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Finite state machines summary 

  Models for representing sequential circuits 
  abstraction of sequential elements 
  finite state machines and their state diagrams 
  inputs/outputs 
  Mealy, Moore, and synchronous Mealy machines 

  Finite state machine design procedure 
  deriving state diagram 
  deriving state transition table 
  determining next state and output functions 
  implementing combinational logic 

  Hardware description languages 


