
CSE 370 Fall 1999
Solution for Assignment 1

10/04/99

1. Does not require a solution

2. Ditto

3.

a)

15C.3816 = (1 x 16^2 + 5 x 16^1 + 12 x 16^0 + 3 x 16^(-1) + 8 x 16^(-2))10
 = (1 x 256 + 5 x 16 + 12 x 1 + 3 x 0.0625 + 8 x 0.00390625)10
 = (256 + 80 + 12 + 0.1875 + 0.03125)10
 = 348.2187510

b)

First, let’s do the integer part:
3710 = 2 x 1810 + 1
1810 = 2 x 910 + 0
910 = 2 x 410 + 1
410 = 1002 (common knowledge, although you could get this by continuing)

Thus, 3710 = 1001012

Now, let’s do the fractional part:

0.2410 x 2 = 0.4810 ==> 0
0.4810 x 2 = 0.9610 ==> 0
0.9610 x 2 = 1.9210 ==> 1
0.9210 x 2 = 1.8410 ==> 1
0.8410 x 2 = 1.6810 ==> 1
0.6810 x 2 = 1.3610 ==> 1
0.3610 x 2 = 0.7210 ==> 0
0.7210 x 2 = 1.4410 ==> 1
0.4410 x 2 = 0.8810 ==> 0
0.8810 x 2 = 1.7610 ==> 1

Now, read the bits from top to bottom, so:
0.2410 = 0.00111101012

We can now add the integer and the fractional results, so:
37.2410 = 100101.0011110101...2

4.

A few notes before we start. We only have four bits, so let’s compute the range of
numbers we can represent in each one of the cases:

• Unsigned: 00002 to 11112, so range is 0 to 15
• Sign-Mag: Max magnitude is 1112 = 7, so range is -7 to +7
• 1’s complement: Max is 01112 = 7 since 1000 represents -7. So range is -7 to +7.

• 2’s complement: Max is 01112 = 7 since 1000 represents -8. So range is -8 to +7.
• FP: Can’t represent -tive numbers since we don’t have a sign bit, so min is 0. Max is

1111, which is 0.112 x 2^112 = 0.112 x 2^3 = 1102 = 6. So the range is 0 to 6.
• BCD: We only have four bits, and that’s only one decimal digit, so the range is 0 to

9.

a)
 1000
 x -1

 overflow

• Unsigned: 1000 is 8, 8 x -1 = -8, that’s overflow, so we have an X.
• Sign-Mag: 1000 is -0, -0 x -1 = 0, that’s 0000 in sign-mag, so we don’t have an X.
• 1’s comp: 1000 is -7, -7 x -1 = 7, that’s 0111 in 1’s comp, so we don’t have an X.
• 2’s comp: 1000 is -8, -8 x -1 = 8, that’s overflow in 2’s comp, so we have an X.
• FP: 1000 is 0.102 x 2^002 = 0.102, 0.102 x -1 = -0.102, that’s overflow, so we have an

X.
• BCD: 1000 is 8, 8 x -1 = -8, that’s overflow, so we have an X

b)
 1000
 + 1

 0001

• Unsigned: 1000 is 8, 8 + 1 = 9, that’s 1001, so we don’t have an X.
• Sign-Mag: 1000 is -0, -0 + 1 = 1, that’s 0001 in sign-mag, so we have an X.
• 1’s comp: 1000 is -7, -7 + 1 = -6, that’s 1001 in 1’s comp, so we don’t have an X.
• 2’s comp: 1000 is -8, -8 + 1 = -7, that’s 1001 in 2’s comp, so we don’t have an X.
• FP: 1000 is 0.102 x 2^002 = 0.102, 0.102 + 1 = 1.102 = 0.112 x 2^012, that’s 1101 in FP,

so we don’t have an X.
• BCD: 1000 is 8, 8 + 1 = 9, that’s 1001 in BCD, so we don’t have an X.

c)
 1000
 x 2

 1001

• Unsigned: 1000 is 8, 8 x 2 = 16, that’s overflow, so we don’t have an X.
• Sign-Mag: 1000 is -0, -0 x 2 = 0, that’s 0000 or 1000 in sign-mag, so we don’t have an

X.
• 1’s comp: 1000 is -7, -7 x 2 = -14, that’s overflow, so we don’t have an X
• 2’s comp: 1000 is -8, -8 x 2 = -16, that’s overflow, so we don’t have an X
• FP: 1000 is 0.102 x 2^002 = 0.102, 0.102 x 2 = 1.02 = 0.102 x 2^012, which is 1001, so we

have an X.
• BCD: 1000 is 8, 8 x 2 = 16, that’s overflow, so we don’t have an X.

d)
 1000
 + 2

 overflow

• Unsigned: 1000 is 8, 8 + 2 = 10, that’s 1010, so we don’t have an X.
• Sign-Mag: 1000 is -0, -0 + 2 = 2, that’s 0010 in sign-mag, so we don’t have an X.
• 1’s comp: 1000 is -7, -7 + 2 = -5, that’s 1010 in 1’s comp, so we don’t have an X.
• 2’s comp: 1000 is -8, -8 + 2 = -6, that’s 1010 in 2’s comp, so we don’t have an X.
• FP: 1000 is 0.102 x 2^002 = 0.102, 0.102 + 2 = 10.102 = 0.1012 x 2^102, that’s

approximately 1010 in FP, so we don’t have an X. Note that we don’t have overflow
here. We are just loosing precision that's all. That's different from actually going
outside of the range that the number system can handle.

• BCD: 1000 is 8, 8 + 2 = 10, that's overflow in BCD, so we have an X.

e)
 1000
 + 1

 1001

• Unsigned: 1000 is 8, 8 + 1 = 9, that's 1001, so we have an X.
• Sign-Mag: 1000 is -0, -0 + 1 = 1, that's 0001 in sign-mag, so we don’t have an X.
• 1’s comp: 1000 is -7, -7 + 1 = -6, that's 1001 in 1's comp, so we have an X.
• 2’s comp: 1000 is -8, -8 + 1 = -7, that's 1001 in 2's comp, so we have an X.
• FP: 1000 is 0.10 2 x 2^00 2 = 0.10 2, 0.10 2 + 1 = 1.10 2 = 0.11 2 x 2^01 2, that's 1101 in FP,

so we don’t have an X.
• BCD: 1000 is 8, 8 + 1 = 9, that's 1001 in BCD, so we have an X.

So, the table looks like this:

Unsigned Sign-Mag 1’s Comp 2’s Comp FP BCD
a X X X X
b X
c X
d X
e X X X X

5
a)

Unsigned

 101010
+ 010110

 1000000

This is overflow, since we can't express this in 6 bits. Note that unlike in the 1's and
2's complement cases, where a carry is not necessarily overflow, in unsigned, a carry
ALWAYS indicates overflow.

Sign-Magnitude

101010 is a negative number whose magnitude is 01010
010110 is a positive number whose magnitude is 10110

Since 10110 is bigger than 01010, the sign of the result will be positive, and the
magnitude of the result will be 10110 - 01010.

 10110
- 01010

 01100

So, C is a positive number whose magnitude is 01100, thus C = 001100

1’s complement

 101010
+ 010110

 1000000
+ 1

 1000001

We can now ignore the carry, so C = 000001. There is no overflow because we added a
negative number with a positive one, and got a positive result, which is very normal.

2’s complement

 101010
+ 010110

 1000000

We can now ignore the carry, so C = 000000. Again, there is no overflow for the same
reason as in the 1’s complement case.

b)

We convert from 6-bit 2’s complement to 7-bit 2’s complement by finding what the value of
the 6-bit bit stream and then convert that value into 7-bit 2’s complement notations.

Let’s start with A.

A = 101010. This is a negative number because the msb (most significant bit) is 1. The
magnitude of A is therefore 0101012 + 1 = 0101102 (got this by inverting the bits of A and
then adding 1). Thus, the value of A is -0101102.

To represent A in 7-bit 2’s complement, we need to represent 0101102 in 7 bits, and then
negate it (which in 2’s complement is inverting the bits, and adding 1). So:

Represent in 7 bits: 0010110
Invert: 1101001
Add 1: 1101010

Thus A7bit = 1101010

Let’s do B.
B = 010110. This is a positive number because the msb is 0. So the value of B is 0101102.

To represent B in 7-bit 2’s complement, we just need to represent 0101102 in 7 bits, which
is 0010110.

Thus B7bit = 0010110

Note that if you follow the following rule, you get the same results:
"To increase the number of bits in 2’s complement, just pad the bit stream to the left by
inserting copies of the msb from the original number until you get the desired number of
bits."

This is called sign extension, and that’s the way that computers convert 2’s complement
numbers from smaller to larger number of bits. For example, if you have a 32-bit integer
and you add it to a 64-bit integer, the 32-bit integer is first sign-extended using the
above mechanism to 64-bits before the addition is done.

Now, we compute B-A

 10010110
 - 1101010

 00101100

Thus, D = 0101100. Note that we had to pad B to the left with an additional 1 so that the
subtraction works. The problem if we don’t do this is that we get into a situation where
we need to borrow a one to do the subtraction, but we don’t have where to borrow it from.
So, what we do is just add an extra 1, which we borrow. This is essentially the opposite
of "ignore the carry": we are adding the extra 1 to make the bit-wise subtraction work.

6.

We first need to get the two numbers to the same exponent.
A = 0.11012 x 2 ^ 01002

B = 0.11112 x 2 ^ 01112
 = 111.12 x 2 ^ 01002

Since we now have numbers with the same exponent, we can add:

 0.11012
+ 111.12

+ 1000.01012

Thus, the result is 1000.01012 x 2 ^ 01002 = 0.100001012 x 2^10002
In the given floating point format, the result would be C = 10001000. Notice that we lost
some precision.

