CSE 370 Fall 99
 Solution for Assignment 2
 10/12/99

1.a)

Reading the pMOS (top) part directly

$$
\mathrm{F}=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{C}^{\prime}\right)
$$

Also to recheck you should read the nMOS part directly

$$
\mathrm{F}^{\prime}=\mathrm{AB}+\mathrm{BC}+\mathrm{A}^{\prime} \mathrm{C}
$$

And check that these expressions are negation of each other.
$\left(\mathrm{F}^{\prime}\right)^{\prime}=\left(\mathrm{AB}+\mathrm{BC}+\mathrm{A}^{\prime} \mathrm{C}\right)^{\prime}=(\mathrm{AB})^{\prime}(\mathrm{BC})^{\prime}\left(\mathrm{A}^{\prime} \mathrm{C}\right)^{\prime}$ $=\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{C}^{\prime}\right)$
(DeMorgans Law all the way!)
b)

Applying the consensus Theorem on F' results in following simplification on F '

$$
\mathrm{F}^{\prime}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}
$$

A more elaborate proof

$\mathrm{F}^{\prime}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}$
$=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}\left(\mathrm{A}+\mathrm{A}^{\prime}\right)$
$=A B+A B C+A^{\prime} C+A^{\prime} B C$
$=\mathrm{AB}(1+\mathrm{C})+\mathrm{A}^{\prime} \mathrm{C}(1+\mathrm{B})$
$=A B+A^{\prime} C$
c)
part a) : 12 transistors
part b): 8 transistors
so four transistors saved .Hence $8 \mu \mathrm{~m}^{2}$ area saved.

1. a)

To prove that NAND is complete show that NOT,AND \& OR gates can be implemented using the NAND gates.
$A^{\prime}=(A+A)^{\prime}=A$ nand A
$A B=\left((A B)^{\prime}\right)^{\prime}=(A \text { nand } B)^{\prime}=((A$ nand $B)$ nand $(A$ nand $B))$
$A+B=\left((A+B)^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime}\right)^{\prime}=\left(A^{\prime}\right.$ nand $\left.B^{\prime}\right)=((A$ nand $A)$ nand $(B$ nand $B))$
b)

$$
\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{B}^{\prime} \mathrm{C}
$$

$$
=(\mathrm{A} \text { nand } \mathrm{A}) \mathrm{B}+(\mathrm{B} \text { nand } \mathrm{B}) \mathrm{C} \text { (using the not expansion) }
$$

$=\mathrm{X}+\mathrm{Y}$ (Let)
so using the expansion for AND gate interms of nand
$\mathrm{X}=(\mathrm{A}$ nand A$) \mathrm{B}=[(\mathrm{A}$ nand A$)$ nand B$)]$ nand $[(\mathrm{A}$ nand A$)$ nand B$)]$
$Y=(B$ nand $B) C=[(B$ nand $B)$ nand $C)]$ nand $[(B$ nand $B)$ nand $C)]$
And
$\mathrm{F}=\mathrm{X}+\mathrm{Y}=(\mathrm{X}$ nand X$)$ nand (Y nand Y$)$
So we get the following schematic.

The opportunity for minimization is evident by the diagram. Note that from P to X' there are two NOT gates (implemented using NAND). So they are redundant and hence can be removed. Same for Q and Y^{\prime}. So the inputs P and Q can directly be used as inputs for the final (rightmost) NAND gate.
5.
a) The truth table for function P is shown below.

A	B	C	$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Reading directly form the truth table:
$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB} \mathrm{C}^{\prime}+\mathrm{ABC}$
b) XOR can considered as a two-input parity function. So obv.
$\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(\mathrm{A}$ xor B$)$ xor C
More formally, proof goes as follows
First of all note that
A xor B $=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}{ }^{\prime}$
And hence

$$
(\mathrm{A} \text { xor } \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{AB}
$$

Now for the proof

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC} \\
& \quad=\mathrm{C}\left(\mathrm{~A}^{\prime} \mathrm{B}^{\prime}+\mathrm{AB}\right)+\mathrm{C}^{\prime}\left(\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB} \mathrm{~A}^{\prime}\right) \\
& \quad=\mathrm{C}(\mathrm{~A} \text { xor } \mathrm{B})^{\prime}+\mathrm{C}^{\prime}(\mathrm{A} \text { xor } \mathrm{B}) \\
& \quad=\mathrm{C} \text { xor }(\mathrm{A} \text { xor } \mathrm{B}) \text {. }
\end{aligned}
$$

c)

The function P (the wire P) is 1 when three are odd number of 1 's in A, B and C . This implies that together $\mathrm{P}, \mathrm{A}, \mathrm{B}$ and C should always have even number of 1's if transmitted correctly i.e. They should always have their parity as 0 in case there is no error.

A	B	C	P	$\mathrm{E}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{P})$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

d) Using the same intuitive argument as above we get
$\mathrm{E}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{P})=(\mathrm{A}$ xor B$) \operatorname{xor}(\mathrm{C}$ xor D$)$
A more formal proof would be on same lines as in part b) above basically grouping

Terms with C'D', C'D, CD', CD together first then basis of D and D' and finally as a whole one big term. The schematic is drawn below NOTE: XOR is associative.

