Combinational logic

- Basic 2-input functions
 - ➤ NOT, AND, OR, NAND, NOR, XOR, . . .
 - > Laws of boolean logic
- ☐ Theorems for logic simplification
 - > Proofs
 - > Applications
- ☐ Gate logic
 - > networks of Boolean functions
 - > time behavior
- ☐ Standard Representations
 - > two-level cannonical forms
 - > incompletely Tools for Logic Simplification specified functions
 - Boolean cubes and Karnaugh maps
 - > two-level simplification

Possible logic functions of two variables

- ☐ There are 16 possible functions of 2 input variables:
 - \triangleright in general, there are $2^{**}(2^{**}n)$ functions of n inputs
 - 8 inputs = 2^2^8 = 2^256 = **about a google**

An algebraic structure: A set of "natural laws"

- □ A boolean algebraic structure consists of
 - \triangleright a set of elements (constants) B = $\{0,1\}$
 - binary operations { + , }
 - and a unary operation {' }
 - such that the following <u>axioms</u> hold:

```
1. closure: a + b is in B

2. commutative: a + b = b + a

3. associative: a + (b + c) = (a + b) + c

4. Identity: a + 0 = a

a + 1 = 1

5. distributive: a + (b \cdot c) = (a + b) \cdot (a + c)

6. complement: a + b = b + a

a \cdot b = b \cdot a

a \cdot (b \cdot C) = (a \cdot b) \cdot c

a \cdot (b \cdot C) = (a \cdot b) \cdot c

a \cdot (b \cdot C) = (a \cdot b) \cdot (a \cdot c)

a \cdot (b \cdot C) = (a \cdot b) + (a \cdot c)

a \cdot (a \cdot c) = (a \cdot b) + (a \cdot c)

a \cdot (a \cdot c) = (a \cdot b) + (a \cdot c)
```

Defines AND, OR, NOT only (•,+,')

Notice, no definition of XOR,+,*...

Our question: Is this simple system powerful enough to build any digital system?

Completeness

- ☐ All 2-input functions can be implemented with AND,OR,NOT
 - > There are few enough that we can test them all

X	Y	X'	Y'	X • Y	X' ● Y'	(X •	$\bullet Y) + (X' \bullet Y')$
0	0	1	1	0	1	1	
0	0 1 0	1 1 0	0	0	0	0	/ V • V) + / V • V V - V
1	0	0	1	0	0	0	$(X \bullet Y) + (X' \bullet Y') \equiv X = Y$
1	1	0	0	1	0	1	

Boolean expression that is true when the variables X and Y have the same value and false, otherwise

X, Y are Boolean algebra variables

■ What about n-input functions?

Proof by Construction

Given a truth table w/ inputs $I = \langle i_1, ..., i_n \rangle$ and output O (we can do each output separately), here is a method to build O:

i1	i2	i3	i4	0
0	0	0	1	1
0	0	1	1	1
1	0	1	0	1
0	1	1	0	1
els	se			0

- \Box Satisfy yourself that $F \Leftrightarrow O$
- AND, OR, NOT are sufficient to implement any function

An Example: The binary adder

□ <u>1-bit binary adder</u>

> inputs: A, B, Carry-in

> outputs: Sum, Carry-out

В	Cin	S	Cout	
0	0	0	0	S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin
1	Ō	1	Ŏ	
0	0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	0	Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
0	1	0	1	
1	1		i	Consider only carry: $6 + 24 = 30$ transistors
	B 0 0 1 1 0 0 1	B Cin 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1	B Cin S 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1	B Cin S Cout 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1

Can we do better than this?

Prove some Simplification Theorems

- \Box Consensus Theorem: XY + YZ + X'Z = XY + X'Z
- \Box Let F = X Y + YZ + X'Z, and Let G = X Y + X'Z
- \square Assume F \neq G, then try to find a contradiction
 - \triangleright First prove G=1 \rightarrow F=1
 - By Assoc. F = (XY+X'Z)+YZ so F = (G)+YZ
 - G=1 so F=1+YZ
 - By Identity F = 1
 - \triangleright Then prove F=1 \rightarrow G=1
 - By contradiction, assume F=1 and G=0
 - F = G+YZ so F = (0+YZ)
 - By Identity F = YZ so Y=1 and Z=1
 - So G = (X1 + X'1) = 0
 - By Identity (X + X') = 0, contradicts Complement Axiom
- \Box There are no values of XYZ such that F=1 and G=0 QED.
- ☐ This is called the consensus theorem and it is quite useful...

Useful Theorems based on Axioms

7. idempotency:

$$X + \dot{X} = X$$

$$X \bullet X = X$$

8. involution:

$$(X')' = X$$

9. uniting:

$$X \bullet Y + X \bullet Y' = X$$

$$(X + Y) \bullet (X + Y') = X$$

10. absorption:

$$X + X \bullet Y = X$$

 $(X + Y') \bullet Y = X \bullet Y$

$$X \bullet (X + Y) = X$$

 $(X \bullet Y') + Y = X + Y$

11. factoring:

$$(X + Y) \bullet (X' + Z) =$$

 $X \bullet Z + X' \bullet Y$

$$X \bullet Y + X' \bullet Z =$$

 $(X + Z) \bullet (X' + Y)$

12. consensus:

$$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$$

$$(X + Y) \bullet (Y + Z) \bullet (X' + Z) =$$

 $(X + Y) \bullet (X' + Z)$

13. de Morgan's:

$$(X + Y + \dots)' = X' \bullet Y' \bullet \dots$$

$$(X \bullet Y \bullet ...)' = X' + Y' + ...$$

14. generalized de Morgan's:

$$f'(X1,X2,...,Xn,0,1,+,\bullet) = f(X1',X2',...,Xn',1,0,\bullet,+)$$

DeMorgan's Theorem

$$\Box F = (a + b)$$

 \triangleright By DeMorgan's Theorem: F' = (a' b')

<u>a b</u>	F	a'b'	F '
00	0	11 10 01 00	1
01	1	10	0
10	1	01	0
a b00011011	1	00	0

■ Why DeMorgan's is important

> Convert and-or to nand-nand logic

•
$$F = (a + b)$$
 so $F = ((a+b)')'$

Duality Theorem

- Duality
 - > a dual of a Boolean expression is derived by replacing
 - by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - > any theorem that can be proven is thus also proven for its dual!
 - a meta-theorem (a theorem about theorems)
- ☐ Or

T
$$(X1,X2,...,Xn,0,1,+,\bullet) \Leftrightarrow T(X1,X2,...,Xn,1,0,\bullet,+)$$

 $[(a\bullet a') = 0] \Leftrightarrow [(a+a') = 1)]$

- ☐ Different than deMorgan's Law
 - > this is a statement about theorems
 - > this is not a way to manipulate (re-write) expressions

Duals of Useful Theorems

7. idempotency:

$$X + X = X$$

$$X \bullet X = X$$

8. involution:

$$(X')' = X$$

9. uniting:

$$X \bullet Y + X \bullet Y' = X$$

$$(X + Y) \bullet (X + Y') = X$$

10. absorption:

$$X + X \bullet Y = X$$

 $(X + Y') \bullet Y = X \bullet Y$

$$X \bullet (X + Y) = X$$

 $(X \bullet Y') + Y = X + Y$

11. factoring:

$$(X + Y) \bullet (X' + Z) =$$

 $X \bullet Z + X' \bullet Y$

$$X \bullet Y + X' \bullet Z =$$

 $(X + Z) \bullet (X' + Y)$

12. consensus:

$$(X \bullet Y) + (Y \bullet Z) + (X' \bullet Z) = X \bullet Y + X' \bullet Z$$

$$(X + Y) \bullet (Y + Z) \bullet (X' + Z) =$$

 $(X + Y) \bullet (X' + Z)$

13. de Morgan's:

$$(X + Y + \dots)' = X' \bullet Y' \bullet \dots$$

$$(X \bullet Y \bullet ...)' = X' + Y' + ...$$

14. generalized de Morgan's:

$$f'(X1,X2,...,Xn,0,1,+,\bullet) = f(X1',X2',...,Xn',1,0,\bullet,+)$$

Proof by deduction

☐ <u>Using the axioms of Boolean algebra:</u>

 \triangleright e.g., prove the theorem: $X \bullet Y + X \bullet Y' = X$

distributivity (8)
$$X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$$
 complementarity (5) $X \cdot (Y + Y') = X \cdot (1)$ identity (1D) $X \cdot (1) = X$

 \triangleright e.g., prove the theorem: $X + X \bullet Y = X$

identity (1D)
$$X + X \cdot Y = X \cdot 1 + X \cdot Y$$

distributivity (8) $X \cdot 1 + X \cdot Y = X \cdot (1 + Y)$
identity (2) $X \cdot (1 + Y) = X \cdot (1)$
identity (1D) $X \cdot (1) = X -$

Proof by enumeration (show all cases)

- ☐ Use complete truth table to show all cases:
 - > e.g., de Morgan's:

$$(X + Y)' = X' \bullet Y'$$

NOR is equivalent to AND
with inputs complemented

$$(X \bullet Y)' = X' + Y'$$

NAND is equivalent to OR
with inputs complemented

X	Υ	X'	Y'	(X + Y)'	X' • Y'
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Back to our Problem

☐ 1-bit binary adder

> inputs: A, B, Carry-in

> outputs: Sum, Carry-out

_A	В	Cin	S	Cout	_
0	0	0	0	0	
0	0	1	1	0	S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin
0	1	0	1	0	
0	1	1	0	1	Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	In CMOS → 42 transistors!!
1	1	1	1	1	
			1		

Can we do better than this?

Apply the theorems to simplify expressions

- ☐ The theorems of Boolean algebra can simplify Boolean expressions
 - > e.g., full adder's carry-out function (same rules apply to any function)

```
Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin

= A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= A' (B Cin) + A (B Cin) + A B' Cin + A B Cin' + A B Cin

= B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin

= B Cin + B'(ACin) + B(ACin) + (A B)Cin' + (A B)Cin

= B Cin + A Cin + A B
```

From 30 to 18 transistors

Apply the theorems to simplify expressions

Sum = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin
= Cin' (A'B + AB') + Cin(AB + A'B')
= Cin'(A
$$\oplus$$
B) + Cin(A \oplus B)'
= Cin \oplus (A \oplus B)

But we have we saved any area for sum??

Useful for The next homework

Try it for MUTEX

RegA	ReqB	s1	s0	s1*	s0*
0	0	0	0	0	0
0	1	0	0	0	_1_
1	0	0	0	1	0
1	1	0	0	1	0
0	0	1	0	0	0
0	1	1	0	0	1
1	0	1	0	1	0
1	1	1	0	1	0
0	0	0	1	0	0
0	1	0	1	0	1
1	0	0	1	1	0
1	1	0	1	0	1
0	0	1	1	0	0
0	1	1	1	0	1
1	0	1	1	1	0
1	1	1	1	1	0

From Boolean expressions to logic gates

□ NOT X' X ~X

□ AND X • Y XY X ∧ Y

 \square OR X + Y X \vee Y

X — Y

X _______ z

X Y 0 1 1 0

 $\begin{array}{c|cccc} X & 1 & 2 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

From Boolean expressions to logic gates

■ NAND

X Y Z 0 0 1 0 1 1 1 0 1 1 1 0

□ <u>NOR</u>

X xor Y = X Y' + X' Y X or Y but not both ("inequality", "difference")

 $\begin{array}{c} \square & \underline{XOR} \\ & \underline{X \oplus Y} \end{array}$

$$X \rightarrow Z$$

X xnor Y = X Y + X' Y' X and Y are the same ("equality", "coincidence")

$$\begin{array}{c} \square & \underline{XNOR} \\ X = Y \end{array}$$

From Boolean expressions to logic gates (cont'd)

■ More than one way to map expressions to gates

$$\triangleright$$
 e.g., $Z = A' \bullet B' \bullet (C + D) = (A' \bullet (B' \bullet (C + D)))$

Waveform view of logic functions

- ☐ Just a sideways truth table
 - > but note how edges don't line up exactly
 - > it takes time for a gate to switch its output!

Choosing different realizations of a function

Which realization is best?

- □ Reduce number of inputs
 - literal: input variable (complemented or not)
 - can approximate cost of logic gate as 2 transitors per literal
 - why not count inverters?
 - fewer literals means less transistors.
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - > fan-ins (# of gate inputs) are limited in some technologies
- ☐ Reduce number of gates
 - > fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs

Carry = 18

+extra gate delay Does delay of carry matter

Carry = 16

since Sum is slow??

Which is the best realization? (cont'd)

- ☐ Reduce number of levels of gates
 - fewer level of gates implies reduced signal propagation delays
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- ☐ How do we explore tradeoffs between increased circuit delay and size?
 - > automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduction while trading off against delay

Are all realizations equivalent?

- ☐ Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - > delays are different
 - > glitches (hazards) may arise
 - > variations due to differences in number of gate levels and structure
- ☐ The three implementations are functionally equivalent

Implementing Boolean functions

- □ Technology independent
 - > canonical forms
 - > two-level forms
 - > multi-level forms
- ☐ <u>Technology choices</u>
 - packages of a few gates
 - > regular logic
 - > two-level programmable logic
 - > multi-level programmable logic
 - > ASIC Cell Libraries

Canonical forms

- ☐ Truth table is the unique signature of a Boolean function
- Many alternative gate realizations may have the same truth table
- ☐ Canonical forms
 - > standard forms for a Boolean expression
 - > provides a unique algebraic signature for a truth table

Sum-of-products canonical forms

- □ Also known as disjunctive normal form
- Also known as minterm expansion

Sum-of-products canonical form (cont'd)

- □ Product term (or minterm)
 - ➤ ANDed product of literals input combination for which output is true
 - > each variable appears exactly once, in true or inverted form (but not both)

_A	В	С	minterms	
0	0	0	A'B'C'	m0
0	0	1	A'B'C	m1
0	1	0	A'BC'	m2
0	1	1	A'BC	m3
1	0	0	AB'C'	m4
1	0	1	AB'C	m5
1	1	0	ABC'	m6
1	1	1	ABC	m7
				1
			/	

short-hand notation for minterms of 3 variables

F in canonical form:

$$F(A, B, C) = \Sigma m(1,3,5,6,7)$$

= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + ABC' + ABC'

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$

Product-of-sums canonical form

- □ Also known as conjunctive normal form
- Also known as maxterm expansion

Read: F is not true if...

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

Product-of-sums canonical form (cont'd)

- □ Sum term (or maxterm)
 - > ORed sum of literals input combination for which output is false
 - each variable appears exactly once, in true or inverted form (but not both)

<u>A</u>	В	С	maxterms	
0	0	0	A+B+C	M0
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	M3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	M7
				▼

short-hand notation for maxterms of 3 variables

F in canonical form:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B' + C) (A' + B + C)$

canonical form ≠ minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

S-o-P, P-o-S, and de Morgan's theorem

■ Sum-of-products

$$\triangleright$$
 F' = A'B'C' + A'BC' + AB'C'

■ Apply de Morgan's

$$(F')' = (A'B'C' + A'BC' + AB'C')'$$

$$F = (A + B + C) (A + B' + C) (A' + B + C)$$

□ Product-of-sums

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

☐ Apply de Morgan's

$$(F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'$$

$$F = A'B'C + A'BC + AB'C + ABC' + ABC'$$

Why go through all this?

Sometimes the intuitively easy solution gives you F'!!

Comparison of forms

F = AB + C

Waveforms for the four alternatives

- Waveforms are essentially identical
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Mapping between canonical forms

- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in minterm expansion
 - \triangleright e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - use minterms whose indices do not appear in maxterm expansion
 - \triangleright e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
 - use minterms whose indices do not appear
 - \triangleright e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ so $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - > use maxterms whose indices do not appear
 - \triangleright e.g., $F(A,B,C) = \Pi M(0,2,4)$ so $F'(A,B,C) = \Pi M(1,3,5,6,7)$

Incompleteley specified functions

- □ Example: binary coded decimal increment by 1
 - \triangleright BCD digits encode the decimal digits 0 9 in the bit patterns 0000 1001

Notation for incompletely specified functions

- Don't cares and canonical forms
 - > so far, only represented on-set
 - > also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- □ Canonical representations of the BCD increment by 1 function:

```
\geq Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
```

 \geq Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

 \triangleright Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

Simplification of two-level combinational logic

- ☐ Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - > not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- □ Computer-aided design tools
 - > precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- □ Hand methods still relevant
 - > to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)
- Next: Non-algebraic methods for simplifying 2-level logic