Combinational logic

O Basic 2-input functions
> NOT, AND, OR, NAND, NOR, XOR, . ..
> Laws of boolean logic

O Theorems for logic simplification
> Proofs
> Applications

O Gate logic
> networks of Boolean functions
> time behavior

d Standard Represenations
> two-level cannonical forms
> incompletely Tools for Logic Simplification specified functions

> Boolean cubes and Karnaugh maps
> two-level simplification

CSE 370 - Fall 1999 - Introduction - 1

Possible logic functions of two variables

—

d There are 16 possible functions of 2 input variables:
> in general, there are 2**(2**n) functions of n inputs
= 8 inputs = 22278 = 27256 = about a google

Wheredo we start?

_>F

Y —»

X Y 16 possible functions (FO—F15)

o ol O O O O o o o 1 1 1T 1T 1T 1 1 1

0 if0 o o o 1 1 1 1 0 O O O 1 1 1 1

1 o0 o 1 1 0 0 1 1 O O 1 1 0 O0 1 1

1 i1 1.0 1 0 1 0 1 O 1 O 1 0 1 0 1
0/ X/ / / \ \ \ " \ \1

X xor Y X'=y hotY not
XandY xnor X nand Y
XorY X nor Y not (X and Y)
not (X or Y)

CSE 370 - Fall 1999 - Introduction - 2

An algebraic structure: A set of “natural laws”
 —re—m—--=2:_y

O A boolean algebraic structure consists of

> a set of elements (constants) B = {0,1}
> binary operations { +, ¢ }
> and a unary operation {' }
» such that the following axioms hold:
1. closure: a+b isinB aeb isinB
2. commutative: a+b=Db+a aeb=Dbea
3. associative: a+(b+c)=(@+b)+c ae(bCc)=(aeb)ec
4. Identity: a+0=a ael=a
a+1=1 ae0=0
5. distributive: at+(bec)=(@a+b)e(a+c) ae(b+c)=(aeb)+(aec)
6. complement: a+a' =1 aea =0

Defines AND, OR, NOT only (e,+,")

Notice, no definition of XOR,+,*...

Our question: Is this simple system powerful enough to build
any digital system?

CSE 370 - Fall 1999 - Introduction - 3

Completeness
e EEEEE——

A All 2-input functions can be implemented with AND,OR,NOT
> There are few enough that we can test them all

F1 F4 F9
AND NOR XNOR
X Y X Y [XeY [X'oY' | (XeY)+ (X' oY')
0 0 1 1 0 1 1
2 (]j (]j ?_ g g g (XeY)+(X'oY') = X=Y
1 1 0 0 1 0 1

Boolean expression that is
true when the variables X
and Y have the same value

X, Y are Boolean algebra variables and false, otherwise

d What about n-input functions?

CSE 370 - Fall 1999 - Introduction - 4

Proof by Construction

Q Given a truth table w/ inputs I = <i,....,i.> and output O (we can do each
output separately), here is a method to build O:

i1i2i3i4| O
0001]| 1
0011] 1
1010 1
0110 1
else 0

O Satisfy yourself that F = O
d AND, OR, NOT are sufficient to implement any function

CSE 370 - Fall 1999 - Introduction - 5

An Example: The binary adder
]

Q 1-bit binary adder
> inputs: A, B, Carry-in
> outputs: Sum, Carry-out

A —>
— S
B —» Cout
ou
Cin —

bt
0O O 1 |1 o0 S=A'B'Cin+ A'BCin"+ AB'Cin' + AB Cin
0 1 0 |1 0

0 1 1|0 1 _ _ _ _
1 0 0 |1 O Cout=A'BCin+ AB'Cin + ABCin' + AB Cin
1 0 1 |0 1

1 1 0|0 1 . _ .

1 1 1 |1 1 Consider only carry: 6 + 24 = 30 transistors

Can we do better than this?

CSE 370 - Fall 1999 - Introduction - 6

Prove some Simplification Theorems

O Consensus Theorem: XY +YZ+ X'Z=XY + X'Z
Q LetF=XY+YZ+XZ andLetG=XY + XZ

Q Assume F # G, then try to find a contradiction

> First prove G=1 > F=1
= By Assoc. F = (XY+X'Z2)+YZ so F = (G)+YZ
» G=1soF=1+YZ
= By Identity F =1

> Then prove F=1 > G=1
= By contradiction, assume F=1 and G=0
» F=G+YZ so F = (0+Y2)
= By Identity F = YZ so Y=1 and Z=1
» SoG=(X1+X1)=0
= By Identity (X + X") = 0, contradicts Complement Axiom

0 There are no values of XYZ such that F=1 and G=0 QED.
[This is called the consensus theorem and it is quite useful...

CSE 370 - Fall 1999 - Introduction - 7

Useful Theorems based on Axioms

—
7. idempotency:

X+ X=X XeX=X
8. involution:
(XY =X
9. uniting:
XoeY+XeY' =X X+Y)e(X+Y)=X
10. absorption:
X+ XeY =X Xe(X+Y)=X
(X+Y)eY=XeY XeY)+Y=X+Y
11. factoring:
X+Y)e(X'+2) = XeY+ X oZ=
XeZ+X oY X+2)e(X'+Y)
12.consensus:
XeY)+(Ye2)+ (X' 02) = X+Y)e(Y+2)e(X'+2) =
XoeY+X o7 (X+Y)e (X' + 2)
13.de Morgan's:
X+Y+..)=XeYe, ., XeYe N)=X'+Y+..

14. generalized de Morgan's:
f'(X1,X2,...,Xn,0,1,+,¢) = f(X1'X2',...,Xn",1,0,,+)

CSE 370 - Fall 1999 - Introduction - 8

DeMorgan’s Theorem

d F=(a+b)
> By DeMorgan’s Theorem: F' = (a’b’)
ab|F ab’|F
00 | O 11| 1
01 |1 10 O
10 | 1 01 O
11 | 1 00 O

0 Why DeMorgan’s is important
> Convert and-or to nand-nand logic

* F=(a+b) soF=((a+b))
" F=(@D))
= F = (a'b’)’ whichis (a’ nand b’)

CSE 370 - Fall 1999 - Introduction - 9

Duality Theorem
el

O Duality
> a dual of a Boolean expression is derived by replacing
eby+, +bye 0by 1, and 1 by 0, and leaving variables unchanged

> any theorem that can be proven is thus also proven for its dual!
> a meta-theorem (a theorem about theorems)

d Or
T (X1,X2,...,Xn,0,1,+,¢) = T(X1,X2,...,Xn,1,0,¢,+)
[(@aea’) = 0] = [(a+a’) =1)]

A Different than deMorgan’s Law
> this is a statement about theorems
> this is not a way to manipulate (re-write) expressions

CSE 370 - Fall 1999 - Introduction - 10

Duals of Useful Theorems

—
7. idempotency:

X+ X=X XeX=X
8. involution:
(XY =X
9. uniting:
XoeY+XeY' =X X+Y)e(X+Y)=X
10. absorption:
X+ XeY =X Xe(X+Y)=X
(X+Y)eY=XeY XeY)+Y=X+Y
11. factoring:
X+Y)e(X'+2) = XeY+ X oZ=
XeZ+X oY X+2)e(X'+Y)
12.consensus:
XeY)+(Ye2)+ (X' 02) = X+Y)e(Y+2)e(X'+2) =
XoeY+X o7 (X+Y)e (X' + 2)
13.de Morgan's:
X+Y+..)=XeYe, ., XeYe N)=X'+Y+..

14. generalized de Morgan's:
f'(X1,X2,...,Xn,0,1,+,¢) = f(X1'X2',...,Xn",1,0,,+)

CSE 370 - Fall 1999 - Introduction - 11

Proof by deduction
 —re—m—--=2:_y

O Using the axioms of Boolean algebra:

> e.g., prove the theorem: XeY+XeY = X
distributivity (8) XoeY+ XeY = Xe(Y+Y)
complementarity (5) Xe(Y+Y) = Xe (1)
identity (1D) Xe (1) = X0O

> e.g., prove the theorem: X+ XeY = X
identity (1D) X + XeY = Xel + XeY
distributivity (8) Xel + XeY = Xe(1+Y)
identity (2) Xe(1+Y) = Xe (1)
identity (1D) Xe (1) = X0O

CSE 370 - Fall 1999 - Introduction - 12

Proof by enumeration (show all cases)
e EEEEE——

O Use complete truth table to show all cases:
> e.g., de Morgan's:

1 1 1 X Y X' Y' (X + Y)' X' o Y'
(X+Y) =X-eY 0 0 1 1 1 1
NOR is equivalent to AND ? (1) (1) ? 8 0
with inputs complemented 1 1 0 0 0 8
: : : X Y Xl YI (X ° Y)I Xl + YI
(Xe¥) =X +Y 0 0 1 1 1 1
NAND is equivalent to OR o 1 1 0 1 1
TR 1 0 0 1 1 1
with inputs complemented 1 1 0 0 0 0

CSE 370 - Fall 1999 - Introduction - 13

Back to our Problem
P eee————

Q 1-bit binary adder
> inputs: A, B, Carry-in
> outputs: Sum, Carry-out

A —>
— S
B —» Cout
ou
Cin —

A B C(Cin|S Cout

0 0 0 (0 0

8 (1) (1) % 8 S=A'"B'Cin+A'BCin"+ AB'Cin' + A B Cin
(1) (1) (1) (1) (1) Cout=A'BCin+AB' Cin+ ABCin'+ ABCin
1 0 1|0 1 _

1 1 0 |0 1 In CMOS - 42 transistors!!

1 1 1 1 1

Can we do better than this?

CSE 370 - Fall 1999 - Introduction - 14

Apply the theorems to simplify expressions
]

O The theorems of Boolean algebra can simplify Boolean expressions
> e.g., full adder's carry-out function (same rules apply to any function)

Cout = AABCin+ AB'Cin+ ABCin'+ AB Cin
= AABCin + AB'Cin + ABCin' + ABCin + ABCin
= A'(BCin) + A(BCin) + AB'Cin + ABCin' + ABCin
= BCin + AB'Cin + ABCin' + ABCin + ABCin
= B Cin + B'(ACin) + B(ACin) + (AB)Cin' + (A B)Cin
= BCin + ACin + AB

From 30 to 18 transistors

CSE 370 - Fall 1999 - Introduction - 15

Apply the theorems to simplify expressions
Sum =A"B'Cin+ A'BCin'+ AB'Cin' + A B Cin
= Cin' (AB + AB") + Cin(AB + A'B')
= Cin'(ADB) + Cin(AOB)'
= Cind (AOB)

But we have we saved any area for sum??

R

, D_:_")D—

Useful for
The next
homewor k

T

CSE 370 - Fall 1999 - Introduction - 16

Try it for MUTEX

s1l* sO*

sO

RegA RegB s1

CSE 370 - Fall 1999 - Introduction - 17

From Boolean expressions to logic gates

Q NOT X X ~X

0

1

Q AND XeY XY XOY

X Y |Z
x_: 0 0 |0
Yy — 7 0O 1 |0
Q OR X+Y Xy 100
1 1 1
X Y |Z
: 37
Y 1 0 |1
1 1 1

CSE 370 - Fall 1999 - Introduction - 18

From Boolean expressions to logic gates

d

NAND

x
@)
pS)

< X
N
= O OIX
= O O
= O OR|N

< X
N
== O OIX
= O O
O =N

< X < X
N N
= O OX = O O
= O O = O O
O O|N OO O HN

CSE 370 - Fall 1999 - Introduction - 19

XxorY=XY+XY
X or Y but not both
("inequality", "difference")

XxnorY=XY+ XY
X and Y are the same
("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)

—

 More than one way to map expressions to gates

> eg., Z=A'eB e (C+D)=(Ae (B *(C+D)))

12
T1

f 3-i
use o Input gate A >c .
A 0 / B >c D—[

B N _ i
C __.> L7 5 ::DJ T2
=T

CSE 370 - Fall 1999 - Introduction - 20

Waveform view of logic functions
e EEEEE——

Q Just a sideways truth table
> but note how edges don't line up exactly
> it takes time for a gate to switch its output!

i
Nl I _
Mot ¥] |
W& Y | |
Mot (% &) | 1
W |]
Mot (3 +) . E |
A oxor Y | |
Mot (X xar %) | |

change in Y takes time to "propagate" through gates

CSE 370 - Fall 1999 - Introduction - 21

Choosing different realizations of a function

HHEEREEEOOOO>

OO OOm

HORORFORFOM

O, OO ON

_'I'EIJ

'I'l..l

Djf:)ﬁJ

vel realization

ie don’'t count NOT gates)

e -y
i, (w

[y

I

[y

) (gate

nulti-level realization
s with fewer inputs)

Vo

XOR
but c

gate (easier to draw
ostlier to build)

CSE 370 - Fall 1999 - Introduction - 22

Which realization is best?
O ——

O Reduce number of inputs

> literal: input variable (complemented or not)

= can approximate cost of logic gate as 2 transitors per literal
= why not count inverters?

> fewer literals means less transistors

= smaller circuits

> fewer inputs implies faster gates

= gates are smaller and thus also faster

» fan-ins (# of gate inputs) are limited in some technologies

O Reduce number of gates

> fewer gates (and the packages they come in) means smaller circuits

= directly influences manufacturing costs Carry = 16
) Oo—— > o . textragate delay

. [
Carry =18 - 1=

Cime

Does delay of carry matte

since Sum Is slow??

CSE 370 - Fall 1999 - Introduction - 23

Which is the best realization? (cont’d)
e EEEEE——

Q Reduce number of levels of gates
> fewer level of gates implies reduced signal propagation delays
> minimum delay configuration typically requires more gates
= wider, less deep circuits

d How do we explore tradeoffs between increased circuit delay and size?
> automated tools to generate different solutions
> logic minimization: reduce number of gates and complexity
> logic optimization: reduction while trading off against delay

CSE 370 - Fall 1999 - Introduction - 24

Are all realizations equivalent?

—

O Under the same input stimuli, the three alternative implementations have

almost the same waveform behavior

> delays are different

> glitches (hazards) may arise
> variations due to differences in number of gate levels and structure

O The three implementations are functionally equivalent

£l
£2
£3

CSE 370 - Fall 1999 - Introduction - 25

Implementing Boolean functions
 —re—m—--=2:_y

Q Technology independent
> canonical forms
> two-level forms
> multi-level forms

O Technology choices
> packages of a few gates
> regular logic
> two-level programmable logic
> multi-level programmable logic
» ASIC Cell Libraries

CSE 370 - Fall 1999 - Introduction - 26

Canonical forms
—

O Truth table is the unigue signature of a Boolean function

 Many alternative gate realizations may have the same truth table

a Canonical forms
» standard forms for a Boolean expression
» provides a unique algebraic signature for a truth table

CSE 370 - Fall 1999 - Introduction - 27

Sum-of-products canonical forms
—1—.

O Also known as disjunctive normal form

O Also known as minterm expansion

F= 001 011 101 110 111
Read: Ftrue if ... F= ABC+ABC + ABC + ABC' + ABC

A B C F F'

0 0 0 0

0 0 1 1 0

0 1 0 0 ‘

0 1 1 170 >

1 0 0 0 "

1 0 1 1 0 \

1 1 0 1 0

1 1 1 1 0 F' = AB'C' + A'BC' + AB'C'

Read: F is false if ...

CSE 370 - Fall 1999 - Introduction - 28

Sum-of-products canonical form (cont’d)
e EEEEE——

Q Product term (or minterm)
> ANDed product of literals — input combination for which output is true
> each variable appears exactly once, in true or inverted form (but not both)

F in canonical form:

A B C | minterms

0 0 0 |ABC mo F(A,B,C) =3m(1,3,5,6,7)

0 0 1 AB'C mil = ml+m3+m5+m6+ m7

0 1 0 | ABC m2 = A'B'C + ABC + AB'C + ABC' + ABC
0 1 1 | ABC m3

1 0 0 | ABC m4 canonical form # minimal form

1 0 1 | ABC m5 F(A,B,C) = AB'C+ ABC + AB'C + ABC + ABC'
1 1 0 | ABC mé6 = (A'B' + A'B + AB' + AB)C + ABC'

1 1 1 |ABC m7 = ((A"+ A)(B' + B))C + ABC'

= C + ABC'
/ = ABC' + C
=AB + C

short-hand notation for
minterms of 3 variables

CSE 370 - Fall 1999 - Introduction - 29

Product-of-sums canonical form
O ——

O Also known as conjunctive normal form

O Also known as maxterm expansion

_ F= 000 010 100
Read: Fisnotfalseif...F= A+B+C) (A+B +C) (A'+B+C)

HMHEEREREROOOO>

oo I—LO\

OO OOm
HORORORO|N
HRHRROROROM

Read: F Is not true If...
F=A+B+C)(A+B' +C)(A'+B+C)(A'+B' +C) (A'+B' + ()

CSE 370 - Fall 1999 - Introduction - 30

Product-of-sums canonical form (cont’d)
e EEEEE——

Q Sum term (or maxterm)
» ORed sum of literals — input combination for which output is false
> each variable appears exactly once, in true or inverted form (but not

both)
A B C | maxterms F in canonical form:
0 0 0 |A+B+C MO F(A, B, C) = MM(0,2,4)
0 0 1 |A+B+C M1 = MO e M2 o M4
0 1 0 |A+B+C M2 = (A+B+C)(A+B +C)(A'+B+C)
0 1 1 [A+B+C M3
1 0 0 |A+B+C M4 canonical form # minimal form
L0 L pA+B+C MS F(A,B,C) =(A+B+C)(A+B +C)(A'+B+C)
11 0 |A+B+C Mo =(A+B+C)(A+B +C)
11 1 [A+B+C M/ (A+B+C)(A'+B+C)

/ —(A+C)(B+0C)

short-hand notation for
maxterms of 3 variables

CSE 370 - Fall 1999 - Introduction - 31

S-0-P, P-0-S, and de Morgan’s theorem
—1—.

O Sum-of-products
> F'= AB'C' + ABC' + AB'C'

O Apply de Morgan's
> (F')' = (A'B'C' + A'BC' + AB'C"'
>»F=(A+B+C)(A+B'+C)(A'+ B+ C)

Q Product-of-sums
>»F=A+B+CY(A+B +CYA"+B+CY(A'+B'"+C)(A'+B" +C"
Q Apply de Morgan's
>»(F)Y=(A+B+CYA+B +CYA'+B+CYA'+B'"+OA'"+B' +(C"))
> F=AB'C + ABC + AB'C + ABC' + ABC

Why go through all this?
Sometimes the intuitively easy solution gives you F’!!

CSE 370 - Fall 1999 - Introduction - 32

o Comparison of forms e

:}L

—>_ canonical sum-of-products

:)'E" F1La Simple expressions

[)_J “cover” many cases

F=AB+C
A
o
B
o
C
o

/minimized sum-of-products

-) /canonical product-of-sums

inimized product-of-sums
D_ /mmlmlze
- F4

7>

CSE 370 - Fall 1999 - Introduction - 33

Waveforms for the four alternatives
O ——

O Waveforms are essentially identical
> except for timing hazards (glitches)
> delays almost identical (modeled as a delay per level, not type of gate or
number of inputs to gate)

Fi | 3 I L
F2 I : L
F3 I | | L

: :|_

Fd !

CSE 370 - Fall 1999 - Introduction - 34

Mapping between canonical forms
]

O Minterm to maxterm conversion
> use maxterms whose indices do not appear in minterm expansion
> e.g., F(A,B,C) = Zm(1,3,5,6,7) = NM(0,2,4)

O Maxterm to minterm conversion
> use minterms whose indices do not appear in maxterm expansion
> e.g., F(A,B,C) = NM(0,2,4) = Zm(1,3,5,6,7)

@ Minterm expansion of F to minterm expansion of F'
> use minterms whose indices do not appear
> e.g., F(AB,C) =xm(1,3,5,6,7) so F(A,B,C) = Xm(0,2,4)

d Maxterm expansion of F to maxterm expansion of F'
> use maxterms whose indices do not appear
> e.g., F(A,B,C) =1nM(0,2,4) so F'(AB,C) =T1M(1,3,5,6,7)

CSE 370 - Fall 1999 - Introduction - 35

Incompleteley specified functions
e EEEEE——

d Example: binary coded decimal increment by 1
> BCD digits encode the decimal digits 0 — 9 in the bit patterns 0000 — 1001

A B C D|W X Y Z

O 0 O O (oo 0o o0 1

o 0 0 1 10,0 1 Q off-set of W

O 0 1 0 (jog0 0 1 1

o o0 1 1 (o0 1 0 O B}

o 1 0 olll 1 o 1 on-set of W

8 i ? (1) 8 i 1 don't care (DC) set of W

o 1 1 1 |[[] 0

1 0 0 0 ||1 0

1 0 0 1 ([0 0 O

i 8 i ? § § X § these inputs patterns should

1 1 0O 0 |IX X X never be encountered in practice
1 1 0 1 |IX* X X X — "don't care" about associated
1 1 1 0 X X X X output values, can be exploited
1 1 1 1 |IXX X X X in minimization

CSE 370 - Fall 1999 - Introduction - 36

Notation for incompletely specified functions
 —re—m—--=2:_y

A Don't cares and canonical forms
> so far, only represented on-set
> also represent don't-care-set
> need two of the three sets (on-set, off-set, dc-set)

O Canonical representations of the BCD increment by 1 function:

> Z=m0+m2+m4+m6+m8+di0 +dil1 +di2 + di3 + di4 + di15
> Z=%[m(0,2,4,6,8) +d(10,11,12,13,14,15)]

> Z=M1eM3eM5eM70M9eD10 e D11l e D12 e D13 ¢ D14 « D15
> Z=11[M(1,3,5,7,9) « D(10,11,12,13,14,15)]

CSE 370 - Fall 1999 - Introduction - 37

Simplification of two-level combinational logic
]

O Finding a minimal sum of products or product of sums realization
> exploit don't care information in the process

Q Algebraic simplification
> not an algorithmic/systematic procedure
> how do you know when the minimum realization has been found?

O Computer-aided design tools

> precise solutions require very long computation times, especially for
functions with many inputs (> 10)

> heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions
d Hand methods still relevant
> to understand automatic tools and their strengths and weaknesses
> ability to check results (on small examples)

O Next: Non-algebraic methods for simplifying 2-level logic

CSE 370 - Fall 1999 - Introduction - 38

