Programmable logic arrays (PLA)

Q Pre-fabricated building block of many AND/OR gates
> actually NOR or NAND
> "personalized" by making or breaking connections among the gates
» programmable array block diagram for sum of products form

inputs
A A A
AND product o
array array
terms
outputs
Y Y \ 4

CSE 370 - Fall 1999 - Introduction - 1

Multiplexor Logic
P ———————l

Q F(a,b,c) = a’F(0,b,c) + aF(1,b,c)
> Let G(b,c) = F(0,b,c)
> Let H(b,c) = F(1,b,c)

la
G(b,c) =bc -
H(b,c) =b+c | 9.1 —Carry
— 1

> Example FullAdder Carry = ab + ac + bc
» G=bc H=b+c+bc=b+c

Q F(a,b,c) = a’b’F(0,0,c) + a’bF(0,1,c) + ab’F(1,0,c) + abF(1,1,c)

> F(a,b,c) = a’b’FO + a’bF1 + ab’F2 or abF3 lab
F1 = c 1 4.1 —Carry
F2=c —|?2
F3=1— 13

CSE 370 - Fall 1999 - Introduction - 2

Programmable Logic Devices

A Shared product terms among outputs

example:

FO=A

F2 =8B
F3 =B

+ B'C

F1=AC + AB

g + AAB input side:
+
1 = uncomplemented in term

0 = complemented in term
— = does not participate

personality matrix

output side:

. 1 = term connected to output
product | inputs outputs — = no connection to output
term A B C FO F1 F2 F3
AB 1 1 - |- 1 1 -
B'C -0 1 |- - - 1
AC 1 - 0 |- 1 - - lorcolumns
BC - 0 01 -1 "= (notecommon
A o b= % b Y qbexpression re-use)
- 0Cg
and Fows P

CSE 370 - Fall 1999 - Introduction - 3

Before programming

A All possible connections are available before "programming'
> in reality, all AND and OR gates are NANDs

|—L|—L|—L fuses
NI\ I\ | 1

o o o

TUT U |

AN

CSE 370 - Fall 1999 - Introduction - 4

After programming

d Unwanted connections are "blown"
> fuse (normally connected, break unwanted ones)
> anti-fuse (normally disconnected, make wanted connections)

FO=A +BC
|—A-|—B|—C F1=AC + AB
F2=B'C + AB
YIYY F3=BC + A
—\AB
)"
T\BIC
-/
TTAC
/)
—\BICI
4)
A |
!

YUYy

CSE 370 - Fall 1999 - Introduction - 5

Alternate representation for high fan-in structures

O ———

A Short-hand notation so we don't have to draw all the wires
> % signifies a connection is present and perpendicular

signal is an input to gate

VAVAVAVYS N
J notation for implementing
) FO=AB + A'B
) FI1=CD + C'D
N A B CD
Y, \ LI \I/{ \I/{
WWWW MM B AB
KK ::>—x A'B'
S .) X CD'
_\—/ |
ﬁ(v@vv E
AB+A'B'
CD'+C'D

CSE 370 - Fall 1999 - Introduction - 6

PLA as ROM

A Multiple functions of A, B, C

> F1=ABC dd

> F2=A+B+C Address

> F3=A'"B' C A B C / bits stored in memory

»F4A=A"+B +C gg /

» F5 = A xor B xor C) A A'B'C
X skex _\, % x—x¥—A'B'C
KKK —) X x—x— A'BC'
XK) X% A'BC

1~

X —) X x—%— AB'C

ABCIF1F2 F3F4 F5 :/\

0000 0O 11O TFT TFf) X X% AB'C

001/0 1 0 1 1 — ,

01001011 T Tt i ABC

01101 010 L R ABC

1600101 1 T i

10101 010

11001010

111111001 F1 F2 F3 F4 F5

CSE 370 - Fall 1999 - Introduction - 7

Common Sub-Expression Extraction and Use

Implemement
F=2m(5,7,10,14,15)
G =xm(6,7,9,13,15)

RS
vAVAv:

<o

JUUUU

WV

0 1 3 2

4 5 7 6
F

12 13 15 14
F | F

8 8 11 10

F

0 1 3 2

4 5 7 6
G |G

12 13 15 14
G

8 8 11 10

CSE 370 - Fall 1999 - Introduction - 8

PALs and PLAs: another design example

d Magnitude comparator

)
-
0
i

A e >J(A|B|C|D|
[1]lo |0 |0 0 |u ll1ll1 TR T :D_" ABCD
o |l1ljo o |, £1 0 |l i1] KOO L) ABCD
cl0 |0 |1]0 C 110 |1 O —¥ AB'CD'
0(0 (0 (1 1110 L & :) N *—AC
X) XX A'C
K-map for EQ K-map for NE NN _) % B'D
R
X X X |
BD
A _m_l__ S P 9 X
010100 O |11 Jtadi1 N ABD
—— KKK K 1
1{o]o o 0ot 1]y — B'CD
g1ol1j) clololo]o T — T ABC
1|1]fo o0 0|0 |[1]|o FOFTF—) T BCD'
B B VAVAVAV,
K-map for LT K-map for GT R
EQ NE LT GT

CSE 370 - Fall 1999 - Introduction - 9

PALs and PLAs
O ———————————

a p bie logi (PLA) If not using arow, then
rogrammable logic array
> what we've seen so far make zero

> unconstrained fully-general J
I

AND and OR arrays Ia

)
Q Programmable array logic (PAL) y vli VAVaY4
> Fixed OR array
» faster and smaller OR plane
» No term sharing

a given column of the OR array
has access to only a subset of
the possible product terms

UUUUUU%’%

CSE 370 - Fall 1999 - Introduction - 10

Read-only memories

Like complete,
Q Two dimensional array of 1s and 0s preprogrammed

> entry (row) is called a "word" (N)AND-plane of PLA
> width of row = word-size

word lines (only one
is active — decoder is

> index is called an "address" just right for this)

> address is input
> selected word is output 1& IA N la

:

decoder ["5_'? l'

o
. [T

0
internal organization | | | | | | ‘N
0 n-1
Address

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through
resistor — selectively connected to 0
by word line controlled switches)

CSE 370 - Fall 1999 - Introduction - 11

ROMs and combinational logic

A Combinational logic implementation (two-level canonical form) using a ROM
O Put entire truth table into memory

FO=A'B'C + AB'C' + AB'C
FI=A'B'C + AABC' + ABC
F2=A'B'C' + AAB'C + AB'C
F3=A'BC + AB'C +ABC

ABCIFO F1 F2 F3

0000 0 1 O ROM

0011 1 1 O 8 words x 4 bits/word

0100 1 0 O

0110 0 0 1

i

10111 0 0 O

1100 0 0 1 A B C FOF1F2F3

1110 1 0 O address outputs
truth table block diagram

CSE 370 - Fall 1999 - Introduction - 12

ROM structure
O ———————————

A Similar to a PLA structure but with a fully decoded AND array
» completely flexible OR array (unlike PAL)

n address lines

inputs
Y _ Y Y

memory

decoder 2n word array
(2" words

r
nes by m bits)

outputs

[J [J [J
Y VY A\ 4
m data lines

CSE 370 - Fall 1999 - Introduction - 13

ROM vs. PLA
P e—el)

3 ROM approach advantageous when
> design time is short (no need to minimize output functions)
> most input combinations are needed (e.g., code converters)
> little sharing of product terms among output functions

3 ROM problems
> size doubles for each additional input (32x4 for Calendar example)
> can't exploit don't cares

O PLA approach advantageous when
> design tools are available for multi-output minimization
> there are relatively few unique minterm combinations
» many minterms are shared among the output functions
> Supports multilevel implementation using feedback

O PAL problems
» constrained fan-ins on OR plane
> Difficulty of common term re-use??

CSE 370 - Fall 1999 - Introduction - 14

Regular logic structures for two-level logic

d ROM - full AND plane, general OR plane
» cheap (high-volume component)
» can implement any function of n inputs
> medium speed

aQ PAL — programmable AND plane, fixed OR plane
> intermediate cost
» can implement functions limited by number of terms

> high speed (only one programmable plane that is much smaller than
ROM's decoder)

O PLA — programmable AND and OR planes
> most expensive (most complex in design, need more sophisticated tools)
» can implement any function up to a product term limit
> slow (two programmable planes)

CSE 370 - Fall 1999 - Introduction - 15

Regular logic structures for multi-level logic

A Difficult to devise a regular structure for arbitrary connections between a
large set of different types of gates

> efficiency/speed concerns for such a structure

> in 467 you'll learn about field programmable gate arrays (FPGASs) that are
just such programmable multi-level structures

= programmable multiplexers for wiring

= lookup tables for logic functions (programming fills in the
table)

= multi-purpose cells (utilization is the big issue)

d Use multiple levels of PALs/PLAs/ROMs
> output intermediate result
> make it an input to be used in further logic

CSE 370 - Fall 1999 - Introduction - 16

Combinational logic implementation summary

O Multi-level logic
> conversion to NAND-NAND and NOR-NOR networks
> transition from simple gates to more complex gate building blocks
> reduced gate count, fan-ins, potentially faster
> more levels, harder to design

d Time response in combinational networks

> gate delays and timing waveforms

> hazards/glitches (what they are and why they happen)
O Regular logic

» multiplexers/decoders

» ROMs

> PLAs/PALs

> advantages/disadvantages of each

CSE 370 - Fall 1999 - Introduction - 17

