
Priority Queues and a first intro to
sorting

CSE 373
Data Structures

Priority queues 2

Readings

• Reading
› Chapter 8 Sections 8.1 – 8.2

› Chapter 11 Section 11.1

Priority queues 3

Revisiting FindMin

• Application: Find the smallest (or
highest priority) item quickly
› Operating system needs to schedule jobs

according to priority instead of FIFO
› Event simulation (bank customers arriving

and departing, ordered according to when
the event happened)

› Find student with highest grade, employee
with highest salary etc.

Priority queues 4

Priority Queue ADT

• Priority Queue can efficiently do:
› FindMin() (called Min() in GT (your text book))

• Returns minimum value but does not delete it

› DeleteMin() (called removeMin() in GT)
• Returns minimum value and deletes it

› Insert (k)
• In GT Insert (k,x) where k is the key and x the value. In

all algorithms the important part is the key, a
“comparable” item. We’ll skip the value.

› size() and isEmpty()

Priority queues 5

List implementation of a Priority
Queue

• What if we use unsorted lists:
› FindMin and DeleteMin are O(n)

• In fact you have to go through the whole list
› Insert(k) is O(1)

• What if we used sorted lists
› FindMin and DeleteMin are O(1)

• Be careful if we want both Min and Max (circular array or
doubly linked list)

› Insert(k) is O(n)
• Recall Assignment 1!

Priority queues 6

Selection Sort

• Selection Sort
› Sorts an unsorted list S into a sorted list T
While !S.isEmpty(){
k := S.DeleteMin();
T.addlast(k); // An easy simplification of Insert(k)

}

• Time complexity?
• Easy modification to do it in place

Priority queues 7

Insertion Sort

• Start with unsorted S and want sorted T
While !S.isEmpty() {
k:= S.deletelast(); // or deletefirst whichever is easier

T.Insert(k); // Insert so that T is sorted
}

• Complexity?
• Again easy to do it place.

Priority queues 8

Mergesort: A More efficient
sorting algorithm

• Uses a “Divide and Conquer” strategy
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Main idea Divide list into two halves,
recursively sort left and right halves, then
merge two halves Mergesort

Priority queues 9

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

Priority queues 10

Mergesort (array implementation)

• Divide it in two at the midpoint
• Conquer each side in turn (by

recursively sorting)
• Merge two halves together

8 2 9 4 5 3 1 6

Priority queues 11

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array

Priority queues 12

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array

Priority queues 13

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array

Priority queues 14

Merging

i j

target

normal

i j

target

Left completed
firstcopy

Priority queues 15

Merging

i j

target

Right completed
first

first

second

Priority queues 16

Merging
Merge(A[], T[] : integer array, left, right : integer) : {
mid, i, j, k, l, target : integer;
mid := (right + left)/2;
i := left; j := mid + 1; target := left;
while i < mid and j < right do
if A[i] < A[j] then T[target] := A[i] ; i:= i + 1;
else T[target] := A[j]; j := j + 1;

target := target + 1;
if i > mid then //left completed//
for k := left to target-1 do A[k] := T[k];

if j > right then //right completed//
k : = mid; l := right;
while k > i do A[l] := A[k]; k := k-1; l := l-1;
for k := left to target-1 do A[k] := T[k];

}

Priority queues 17

Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
if left < right then

mid := (left + right)/2;
Mergesort(A,T,left,mid);
Mergesort(A,T,mid+1,right);
Merge(A,T,left,right);

}

MainMergesort(A[1..n]: integer array, n : integer) : {
T[1..n]: integer array;
Mergesort[A,T,1,n];

}

Priority queues 18

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Priority queues 19

Iterative Mergesort

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Need of a last copy

Priority queues 20

Iterative Mergesort

IterativeMergesort(A[1..n]: integer array, n : integer) : {
//precondition: n is a power of 2//
i, m, parity : integer;
T[1..n]: integer array;
m := 2; parity := 0;
while m < n do

for i = 1 to n – m + 1 by m do
if parity = 0 then Merge(A,T,i,i+m-1);

else Merge(T,A,i,i+m-1);
parity := 1 – parity;
m := 2*m;

if parity = 1 then
for i = 1 to n do A[i] := T[i];

}
How do you handle non-powers of 2?

Priority queues 21

Mergesort Analysis

• Let T(N) be the running time for an
array of N elements

• Mergesort divides array in half and calls
itself on the two halves. After returning,
it merges both halves using a temporary
array

• Each recursive call takes T(N/2) and
merging takes O(N)

Priority queues 22

Mergesort Recurrence
Relation

• The recurrence relation for T(N) is:
› T(1) < a

• base case: 1 element array constant time

› T(N) < 2T(N/2) + bN
• Sorting N elements takes

– the time to sort the left half
– plus the time to sort the right half
– plus an O(N) time to merge the two halves

• T(N) = O(n log n)

Priority queues 23

Mergesort Analysis
Upper Bound

logn)O(n
nlogdncn

2n ifkdnnT(1)
kdn)T(n/22

3dn8T(n/8)
2dndn/4)4(2T(n/8)

2dn4T(n/4)
dn dn/2)2(2T(n/4)

2 of power a is n Assumingdn2T(n/2)T(n)

2

k

kk

=
+≤

=+=
+≤

+=
++≤

+=
++≤

+≤

M

n = 2k, k = log n

Priority queues 24

Properties of Mergesort

• Not in-place
› Requires an auxiliary array (O(n) extra

space)
• Stable (sorting does not modify the

relative positions of equal values)
› Make sure that left is sent to target on

equal values.

