
1

1

Extra AVL Tree Slides

2

General Single Rotation

• Height of subtree same as it was before insert!

• Height of all ancestors unchanged.

a

X

Y

b

Z

a

XY

b

Zh h - 1

h + 1 h - 1

h + 2

h

h - 1

h

h - 1

h + 1

Insert into Z, increasing height

3

General Double Rotation

• Height of subtreestill the same as it was before
insert!

• Height of all ancestors unchanged.

a

Z

b

W

c

X Y

a

Z

b

W

c

X Yh

h - 1?

h - 1

h - 1

h + 2

h + 1

h - 1
h - 1

h

h + 1

h

h - 1?

X,Y: one is h-1, one is h-2

4

Height of an AVL tree

Theorem: Any AVL tree with n nodes has height
less than 1.441 log n.

Proof: Given an n-node AVL tree, we want to
find an upper bound on the height of the tree.

Fix h. What is the smallest n such that there is
an AVL tree of height h with n nodes?

Let Wh be the set of all AVL trees of height h
that have as few nodes as possible.

5

Let S(h)be the number of nodes in any one of
these trees.

S(0) = 1, S(1) = 2

Suppose T ∈ Wh, where h ≥ 2. Let TL and TR be
T’s left and right subtrees. Since T has height h,
either TL or TR has height h-1. Suppose it’s TR.

By definition, both TL and TR are AVL trees. In
fact, TR ∈ Wh-1 or else it could be replaced by a
smaller AVL tree of height h-1 to give an AVL
tree of height h that is smaller than T.

6

Similarly, TL ∈ Wh-2.

Therefore, S(h) = 1 + S(h-2) + S(h-1) .

Claim: For h ≥ 0, S(h) ≥ ϕh ,
where ϕ = (1 + √5) / 2 ≈ 1.6.

Proof:The proof is by induction on h.

Basis step: h=0. S(0) = 1 = ϕ0.

h=1. S(1) = 2 > ϕ1.

Induction step: Suppose the claim is true for
0 ≤ m ≤ h, where h ≥ 1.

Note: from
Fibonacci #s,
Golden Ratio

2

7

Then:

S(h+1) = 1 + S(h-1) + S(h)

≥ 1 + ϕh-1 + ϕh (by the i.h.)

= 1 + ϕh-1 (1 + ϕ) (by math)

= 1 + ϕh+1 (using 1+ϕ = ϕ2)

> ϕh+1 Thus, the claim is true.

From the claim, in an n-node AVL tree of height h,

n ≥ S(h)≥ ϕh (from the Claim)

h ≤ logϕ n (by math – logϕ of both sides)

= (log n) / (log ϕ)

< 1.441 log n 8

AVL tree: Running times

• find takes O(log n) time, because height of
the tree is always O(log n).

• insert: O(log n) time because we do a find
(O(log n) time), and then we may have to
visit every node on the path back to the
root, performing up to 2 single rotations
(O(1) time each) to fix the tree.

• remove: O(log n) time. Left as an exercise.

9

AVL Insert Algorithm

• Recursive
1. Search downward for

spot

2. Insert node

3. Unwind stack,

correcting heights

a. If imbalance #1,

single rotate

b. If imbalance #2,

double rotate

• Iterative
1. Search downward for

spot, stacking

parent nodes

2. Insert node
3. Unwind stack,

correcting heights

a. If imbalance #1,

single rotate and

exit

b. If imbalance #2,

double rotate and

exit

Why use a stack?
10

Single Rotation Code

void RotateRight(Node root) {

Node temp = root.right

root.right = temp.left

temp.left = root

root.height = max(root.right.height(),

root.left.height()) + 1

temp.height = max(temp.right.height(),

temp.left.height()) + 1

root = temp

}

X

Y

Z

root

temp

RotateRight brings up the right child

11

Double Rotation Code
void DoubleRotateRight(Node root) {

RotateLeft(root.right)

RotateRight(root)

}
a

Z

b

W
c

XY

a

Z

c

b

X

Y

W

First Rotation

12

Double Rotation Completed

a

Z

c

b

X

Y

W

a

Z

c

b

XY

W

First Rotation Second Rotation

