

Let S(h) be the number of nodes in any one of these trees.

$$S(0) = 1, S(1) = 2$$

Suppose $T \in W_h$, where $h \ge 2$. Let T_L and T_R be T's left and right subtrees. Since T has height *h*, either T_L or T_R has height *h*-1. Suppose it's T_R . By definition, both T_L and T_R are AVL trees. In fact, $T_R \in W_{h-1}$ or else it could be replaced by a smaller AVL tree of height *h*-1 to give an AVL tree of height *h* that is smaller than T.

5

Similarly, $T_L \in W_{h-2}$. Therefore, S(h) = 1 + S(h-2) + S(h-1). Claim: For $h \ge 0$, $S(h) \ge \varphi^h$, where $\varphi = (1 + \sqrt{5}) / 2 \approx 1.6$. Proof: The proof is by induction on h. Basis step: h=0. $S(0) = 1 = \varphi^0$. h=1. $S(1) = 2 > \varphi^1$. Induction step: Suppose the claim is true for $0 \le m \le h$, where $h \ge 1$.

ļ		
Į	Then:	
ļ	S(h+1) = 1 + S(h-1) + S(h)	
ļ	$\geq 1 + \phi^{\text{h-1}} + \phi^{\text{h}}$	(by the i.h.)
ļ	$= 1 + \phi^{h-1} (1 + \phi)$	(by math)
ļ	$= 1 + \phi^{h+1}$	(using $1+\varphi = \varphi^2$)
ļ	$> \phi^{h+1}$ Thus, the claim is true.	
From the claim, in an n -node AVL tree of height h ,		
ļ	$n \ge S(h) \ge \phi^h$ (from the Claim)	
ļ	$h \le \log_{\varphi} n$ (by math $-\log_{\varphi} of$ both sides)	
ļ	$= (\log n) / (\log \varphi)$	
ļ	$< 1.441 \log n$	7
	$h \le \log_{\varphi} n \qquad \text{(by math} - \log_{\varphi} \text{ of both sides)}$ $= (\log n) / (\log \varphi)$ $< 1.441 \log n \qquad 7$	

AVL tree: Running times

- find takes O(log *n*) time, because height of the tree is always O(log *n*).
- insert: O(log *n*) time because we do a find (O(log *n*) time), and then we may have to visit every node on the path back to the root, performing up to 2 single rotations (O(1) time each) to fix the tree.
- remove: O(log *n*) time. Left as an exercise.

8

