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Extra AVL Tree Slides
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General Single Rotation

• Height of subtree same as it was before insert!

• Height of all ancestors unchanged.
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General Double Rotation

• Height of subtreestill the same as it was before 
insert!

• Height of all ancestors unchanged.
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Height of an AVL tree

Theorem: Any AVL tree with n nodes has height 
less than 1.441 log n.

Proof: Given an n-node AVL tree, we want to 
find an upper bound on the height of the tree.

Fix h.  What is the smallest n such that there is 
an AVL tree of height h with n nodes?

Let Wh be the set of all AVL trees of height h
that have as few nodes as possible.
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Let S(h)be the number of nodes in any one of 
these trees.

S(0) = 1, S(1) = 2

Suppose T ∈ Wh, where h ≥ 2.  Let TL and TR be 
T’s left and right subtrees.  Since T has height h, 
either TL or TR has height h-1.  Suppose it’s TR.

By definition, both TL and TR are AVL trees.  In 
fact, TR ∈ Wh-1 or else it could be replaced by a 
smaller AVL tree of height h-1 to give an AVL 
tree of height h that is smaller than T.
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Similarly, TL ∈ Wh-2.

Therefore, S(h) = 1 + S(h-2) + S(h-1) .

Claim: For h ≥ 0, S(h) ≥ ϕh , 
where ϕ = (1 + √5) / 2 ≈ 1.6.

Proof:The proof is by induction on h.

Basis step: h=0.  S(0) = 1 = ϕ0.

h=1.  S(1) = 2 > ϕ1.

Induction step:  Suppose the claim is true for 
0 ≤ m ≤ h, where h ≥ 1.

Note: from 
Fibonacci #s, 
Golden Ratio
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Then:

S(h+1) = 1 + S(h-1) + S(h)

≥ 1 + ϕh-1 + ϕh (by the i.h.)

= 1 + ϕh-1 (1 + ϕ) (by math)

= 1 + ϕh+1            (using 1+ϕ = ϕ2)

> ϕh+1 Thus, the claim is true.

From the claim, in an n-node AVL tree of height h,

n ≥ S(h)≥ ϕh (from the Claim)

h ≤ logϕ n (by math – logϕ of both sides)

= (log n) / (log ϕ)

< 1.441 log n 8

AVL tree: Running times

• find takes O(log n) time, because height of 
the tree is always O(log n).

• insert: O(log n) time because we do a find 
(O(log n) time), and then we may have to 
visit every node on the path back to the 
root, performing up to 2 single rotations 
(O(1) time each) to fix the tree.

• remove: O(log n) time.  Left as an exercise.
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AVL Insert Algorithm

• Recursive
1. Search downward for 

spot

2. Insert node

3. Unwind stack,

correcting heights

a. If imbalance #1,

single rotate

b. If imbalance #2,

double rotate

• Iterative
1. Search downward for

spot, stacking

parent nodes

2. Insert node
3. Unwind stack,

correcting heights

a. If imbalance #1,

single rotate and

exit

b. If imbalance #2,

double rotate and

exit

Why use a stack?
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Single Rotation Code

void RotateRight(Node root) {

Node temp = root.right

root.right = temp.left

temp.left = root

root.height = max(root.right.height(),

root.left.height()) + 1

temp.height = max(temp.right.height(),

temp.left.height()) + 1  

root = temp

}
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Double Rotation Code
void DoubleRotateRight(Node root) {

RotateLeft(root.right)

RotateRight(root)

}
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Double Rotation Completed

a

Z

c

b

X

Y

W

a

Z

c

b

XY

W

First Rotation Second Rotation


