

- Height of subtree still the same as it was before insert!
- Height of all ancestors unchanged.

Let $S(h)$ be the number of nodes in any one of these trees.
$S(0)=1, S(1)=2$
Suppose $\mathrm{T} \in \mathrm{W}_{\mathrm{h}}$, where $\mathrm{h} \geq 2$. Let T_{L} and T_{R} be T's left and right subtrees. Since T has height h, either T_{L} or T_{R} has height h - 1 . Suppose it's T_{R}.
By definition, both T_{L} and T_{R} are AVL trees. In fact, $\mathrm{T}_{\mathrm{R}} \in \mathrm{W}_{\mathrm{h}-1}$ or else it could be replaced by a smaller AVL tree of height $h-1$ to give an AVL tree of height h that is smaller than T.

- Height of subtree same as it was before insert!
- Height of all ancestors unchanged.

Height of an AVL tree

Theorem: Any AVL tree with n nodes has height less than $1.441 \log n$.

Proof: Given an n-node AVL tree, we want to find an upper bound on the height of the tree.
Fix h. What is the smallest n such that there is an AVL tree of height h with n nodes?
Let W_{h} be the set of all AVL trees of height h that have as few nodes as possible.

Similarly, $\mathrm{T}_{\mathrm{L}} \in \mathrm{W}_{\mathrm{h}-2}$.
Therefore, $\mathrm{S}(\mathrm{h})=1+\mathrm{S}(\mathrm{h}-2)+\mathrm{S}(\mathrm{h}-1)$.

Claim: For $h \geq 0, S(h) \geq \varphi^{h}$, where $\varphi=(1+\sqrt{ } 5) / 2 \approx 1.6$.

Note: from Fibonacci \#s, Golden Ratio

Proof: The proof is by induction on h.
Basis step: $h=0 . \mathrm{S}(0)=1=\varphi^{0}$.

$$
h=1 . \quad S(1)=2>\varphi^{1} .
$$

Induction step: Suppose the claim is true for $0 \leq \mathrm{m} \leq h$, where $h \geq 1$.

Then:

$$
\begin{aligned}
& S(h+1)=1+S(h-1)+S(h) \\
& \quad \begin{array}{ll}
\geq 1+\varphi^{h-1}+\varphi^{h} & \quad \text { (by the i.h.) } \\
& =1+\varphi^{h-1}(1+\varphi) \quad \text { (by math) } \\
& \left.=1+\varphi^{h+1} \quad \text { (using } 1+\varphi=\varphi^{2}\right) \\
& >\varphi^{h+1} \quad \text { Thus, the claim is true. }
\end{array}
\end{aligned}
$$

From the claim, in an n-node AVL tree of height h,

$$
\begin{aligned}
& n \geq \mathrm{S}(\mathrm{~h}) \geq \varphi^{\mathrm{h}} \quad \text { (from the Claim) } \\
& h \leq \log _{\varphi} n \quad \quad \text { (by math }-\log _{\varphi} \text { of both sides) } \\
&=(\log n) /(\log \varphi) \\
&<1.441 \log n
\end{aligned}
$$

AVL tree: Running times

- find takes $\mathrm{O}(\log n)$ time, because height of the tree is always $\mathrm{O}(\log n)$.
- insert: $\mathrm{O}(\log n)$ time because we do a find $(\mathrm{O}(\log n)$ time $)$, and then we may have to visit every node on the path back to the root, performing up to 2 single rotations $(\mathrm{O}(1)$ time each) to fix the tree.
- remove: $\mathrm{O}(\log n)$ time. Left as an exercise.

AVL Insert Algorithm

- Recursive
- Iterative

1. Search downward for spot
2. Insert node
3. Unwind stack correcting heights
a. If imbalance \#1,
single rotate
b. If imbalance \#2, double rotate exit
4. Search downward for spot, stacking parent nodes
. Insert node
. Unwind stack, correcting heights
a. If imbalance \#1, single rotate and
b. If imbalance \#2, double rotate and exit

Why use a stack?

RotateRight brings up the right child

```
void RotateRight (Node root) {
```

 Node temp \(=\) root.right
 root.right \(=\) temp.left
 temp.left \(=\) root
 root. height \(=\max (\) root. right. height ()
 root.left.height()) + 1
 temp.height \(=\max (\) temp. right. height (),
 temp.left.height()) +1
 root \(=\) temp
 \}

Double Rotation Code

Double Rotation Completed

