AVL Trees (4.4 in Weiss)

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2011

Today's Outline

- · Announcements
 - Assignment #2 due AT THE BEGINNING OF LECTURE, Fri, Oct 14, 2011.
- · Today's Topics:
 - Binary Search Trees (Weiss 4.1-4.3)
 - AVL Trees (Weiss 4.4)

10/12/2011

2/2011 2

The AVL Balance Condition

Left and right subtrees of *every node* have equal *heights* **differing by at most 1**

Define: **balance**(x) = height(x.left) – height(x.right)

AVL property: $-1 \le balance(x) \le 1$, for every node x

- · Ensures small depth
 - Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\Theta(2^h)$) nodes
- · Easy to maintain
 - Using single and double rotations

10/12/2011

The AVL Tree Data Structure

Structural properties

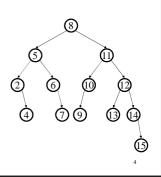
- 1. Binary tree property (0,1, or 2 children)
- 2. Heights of left and right subtrees of *every node* **differ by at most 1**

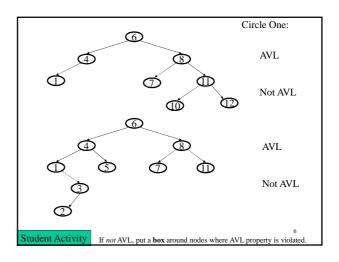
Result:

Worst case depth of any node is: O(log *n*)

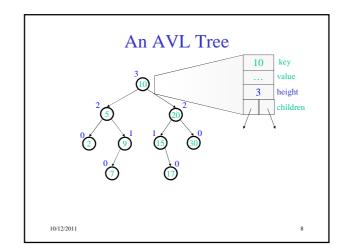
Ordering property

Same as for BST





Proving Shallowness Bound Let S(h) be the min # of nodes in an AVL tree of height hClaim: S(h) = S(h-1) + S(h-2) + 1Solution of recurrence: $S(h) = \Theta(2^h)$ (like Fibonacci numbers) AVL tree of height h=4 with the min # of nodes (10,12,20,11)



AVL trees: find, insert

- AVL find:
 - same as BST find.
- AVL insert:
 - same as BST insert, except may need to "fix" the AVL tree after inserting new value.

10/12/2011

AVL tree insert

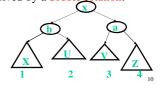
Let *x* be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

- 1. left subtree of the left child of x.
- 2. right subtree of the left child of x.
- 3. left subtree of the right child of x.
- 4. right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a double rotation.



10/12/2011

AVL Insert: detect & fix imbalances

- 1. Insert the new node just as you would in a BST (as a new leaf)
- For each node on the path from the inserted node up to the root, the insertion may (or may not) have changed the node's height
- So after recursive insertion in a subtree, check for height imbalance at each of these nodes and perform a *rotation* to restore balance at that node if needed

All the action is in defining the correct rotations to restore balance

Fact that makes it a bit easier:

- There must be a deepest node that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

10/12/2011

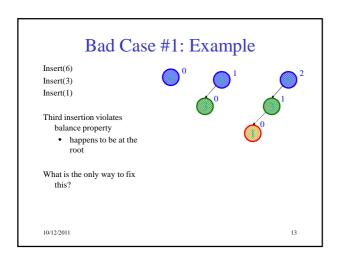
Bad Case #1

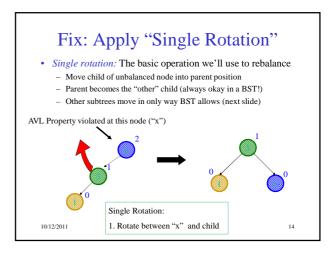
Insert(6)

Insert(3)

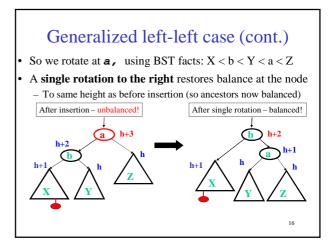
Insert(1)

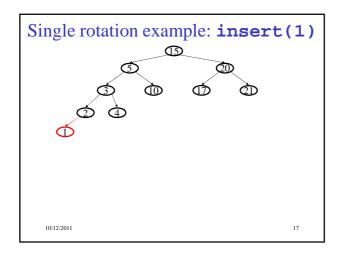
10/12/2011

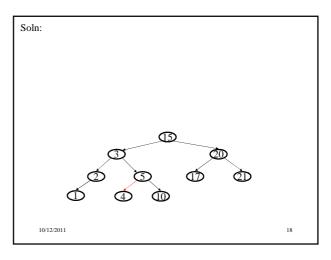


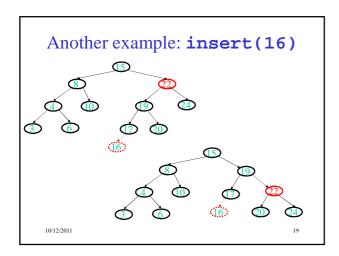


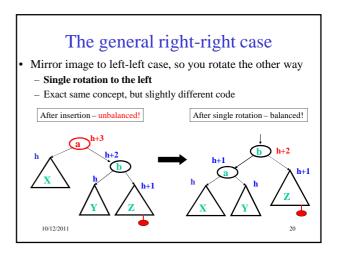
Oval: a node in the tree Triangle: a subtree • Node a imbalanced due to insertion somewhere in left-left grandchild increasing height of left subtree. - 1 of 4 possible imbalance causes (other three coming) • First we did the insertion, which makes a imbalanced: Before insertion – balanced. After insertion – unbalanced! h+1 h h L After insertion – unbalanced!

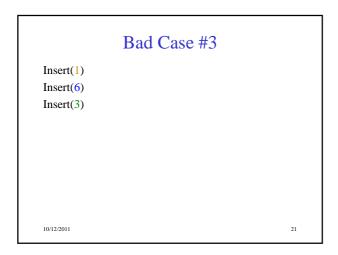


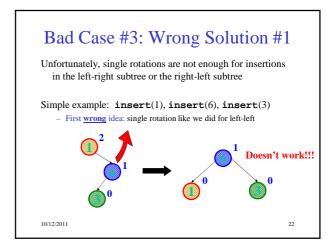


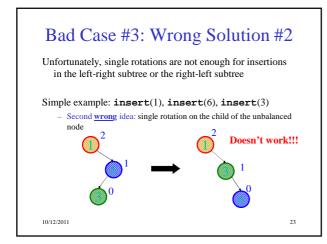


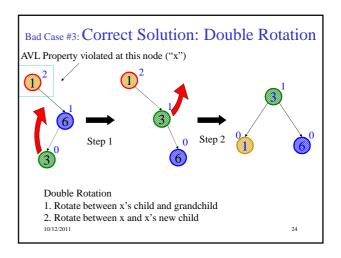


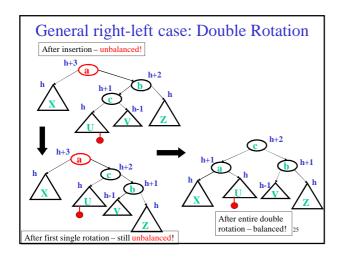


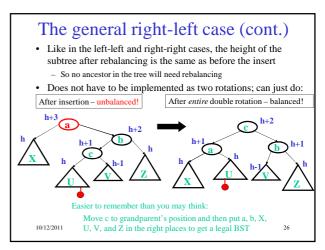


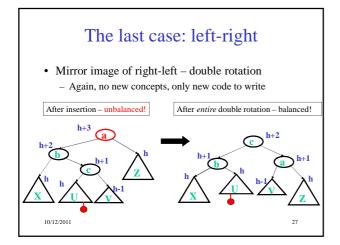


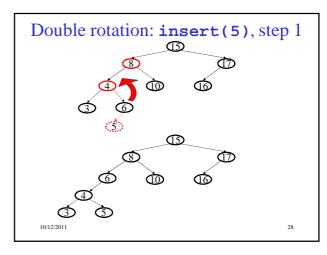


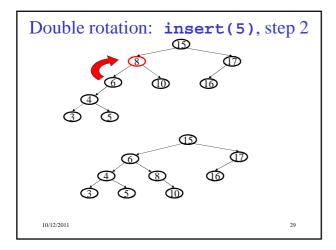












AVL Insert - Summary Insert as in a BST Check back up path for imbalance, which will be 1 of 4 cases: node's left-left grandchild is too tall node's right-left grandchild is too tall node's right-right grandchild is too tall Only one case occurs because tree was balanced before insert After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion So all ancestors are now balanced

Imbalance at node X

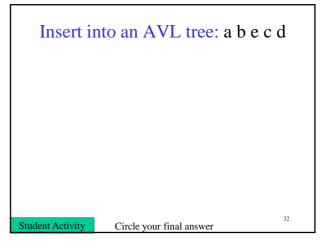
Single Rotation

1. Rotate between x and child

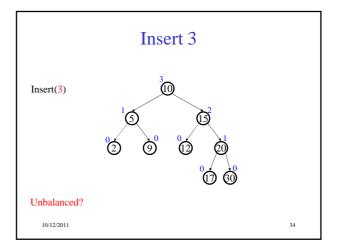
Double Rotation

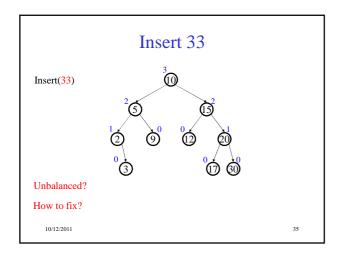
- 1. Rotate between x's child and grandchild
- 2. Rotate between x and x's new child

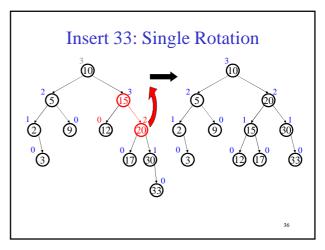
10/12/2011

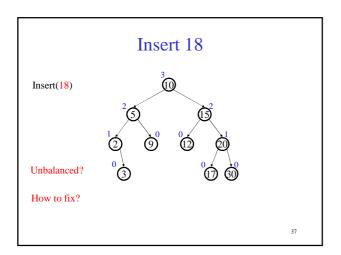


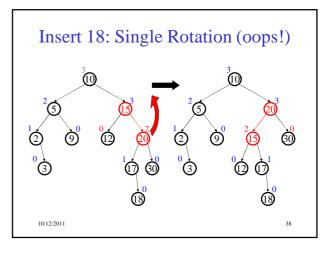
Single and Double Rotations: Inserting what integer values would cause the tree to need a: 1. single rotation? 9 11 2. double rotation? 3. no rotation?

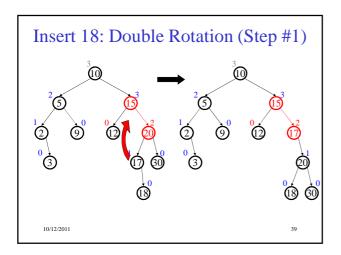


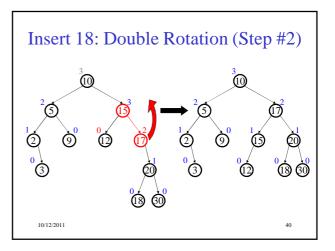












AVL Trees Revisited

- Balance condition:
 - For every node x, $-1 \le \text{balance}(x) \le 1$
 - Strong enough : Worst case depth is $O(\log n)$
 - Easy to maintain : *one* single or double rotation
- Guaranteed O(log n) running time for
 - Find ?
 - Insert ?
 - Delete ?
 - buildTree ?

10/12/2011

AVL Trees Revisited

- What extra info did we maintain in each node?
- Where were rotations performed?
- How did we locate this node?

10/12/2011

42