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Hashing
Chapter 5 in Weiss

CSE 373

Data Structures and Algorithms

Ruth Anderson
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Today’s Outline
• Announcements

– Homework #4 coming:
• Java programming: disjoint sets and mazes
• due Thurs, Nov 10th

• partners allowed

• Today’s Topics: 
– Disjoint Sets & Dynamic Equivalence
– Hashing
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The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes 
called the “Map ADT”

• swetko
Svetoslav Kolev
OH: W 12:15-1:15pm,
F 12:30-1:30pm, 
CSE 220

• armstnp
Nathan Armstrong
OH: Th 3-4pm
CSE 218

• darylh
Daryl Hansen
OH:  Tu 2-3pm
CSE 220

insert(swetko, ….)

find(darylh)

• darylh
Daryl Hansen, …
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Dictionary Implementations
For dictionary with n key/value pairs

insert     find      delete

• Unsorted linked-list           O(1)  *      O(n)            O(n)

• Unsorted array                   O(1)  *     O(n)            O(n)

• Sorted linked list                O(n)         O(n)            O(n)
• Sorted array                        O(n)        O(log n)     O(n)

• BST

• AVL Tree

*Note: If we do not allow duplicates values to be inserted, we would need to do
O(n) work  (a find operation) to check for a key’s existence before insertion
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Hash Tables

• Constant time accesses!

• A hash tableis an array of some 
fixed size, usually a prime number.

• General idea:

key space (e.g., integers, strings)

0

…

TableSize –1 

hash function:
h(K)

hash table
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Hash Tables
Key space of size M, but we only want to store 
subset of size N, where N<<M.

– Keys are identifiers in programs. Compiler keeps track 
of them in a symbol table.

– Keys are student names.  We want to look up student 
records quickly by name.

– Keys are chess configurations in a chess playing 
program.

– Keys are URLs in a database of web pages.
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Example
• key space = integers

• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94

0

1

2

3

4

5

6

7

8

9

10/28/2011 8

Another Example
• key space = integers

• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34
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Student Activity
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Hash Functions
1. simple/fastto compute,

2. Avoid collisions

3. have keys distributed evenlyamong cells.

Perfect Hash function:
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Sample Hash Functions:
• key space = strings

• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize
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Designing a Hash Function for web URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =

Student Activity
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Collision Resolution
Collision: when two keys map to the same location 

in the hash table.  

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing, quadratic 
probing, double hashing)
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Separate Chaining

• Separate chaining: 
All keys that map to 
the same hash value 
are kept in a list 
(“bucket”).
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Insert:
10
22
107
12
42
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Analysis of find
• The load factor,λ, of a hash table is the ratio:         

← no. of elements

← table size

For separate chaining, λ = average # of elements in a 
bucket

• unsuccessful:

• successful:

M

N

10/28/2011 15

How big should the hash table be?

• For Separate Chaining: 
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tableSize: Why Prime?
• Suppose

– data stored in hash table: 7160, 493, 60, 55, 321, 900, 810

– tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends 
to have a pattern

Being a multiple of 
11 is usually not the 
pattern ☺
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Open Addressing
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Insert:
38
19
8
109
10

• Linear Probing: after 
checking spot h(k), 
try spot h(k)+1, if that 
is full, try h(k)+2, 
then h(k)+3, etc.
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Terminology Alert!

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”

Weiss
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Linear Probing
f(i) = i

• Probe sequence:
0th probe =  h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize 

. . .

i th probe = (h(k) + i) mod TableSize 
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Linear Probing – Clustering 

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster
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Load Factor in Linear Probing
• For anyλ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2
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Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe =  h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize 
3th probe = (h(k) + 9) mod TableSize
. . .
i th probe = (h(k) + i2) mod TableSize 

Less likely to 
encounter 
Primary 
Clustering
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Quadratic Probing
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Insert: 
89
18
49
58
79
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Quadratic Probing:

0
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40

93

• h(k) = k mod 7
• Perform these 

inserts:
– Insert(65)

– Insert(10)

– Insert(47)
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Quadratic Probing Example

76
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insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…
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Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will find an 
empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i2) mod size ≠≠≠≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

⇒⇒⇒⇒ i2 mod size = j2 mod size
⇒⇒⇒⇒ (i2 - j2) mod size = 0
⇒⇒⇒⇒ [(i + j)(i - j)] mod size = 0

BUT size does not divide(i-j) or (i+j)
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Quadratic Probing: Properties

• For anyλ < ½, quadratic probing will find an empty 
slot; for bigger λ, quadratic probing mayfind a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same areaare not bad

• But what about keys that hash to the samespot?
– Secondary Clustering!
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Double Hashing

f(i) = i * g(k)
where g is a second hash function 

• Probe sequence:
0th probe =  h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize

2th probe = (h(k) + 2*g(k)) mod TableSize 

3th probe = (h(k) + 3*g(k)) mod TableSize

. . .

i th probe = (h(k) + i*g(k)) mod TableSize 
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Double Hashing Example
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i th probe = (h(k) + i*g(k)) mod TableSize 
h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes  1                   1                 1                  2                 1                 2
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Resolving Collisions with Double Hashing
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Insert these values into the hash table 
in this order.  Resolve any collisions 
with double hashing:

13
28
33
147
43

Hash Functions:
H(k) = k mod M
H2(k) = 1 + ((k/M) mod (M-1))
M =
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Idea: When the table gets too full, create a bigger 
table (usually 2x as large) and hash all the items 
from the original table into the new table.

• When to rehash?
– half full (λ = 0.5)

– when an insertion fails

– some other threshold

• Cost of rehashing?

Rehashing
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Hashing Summary
• Hashing is one of the most important data 

structures.

• Hashing has many applications where operations 
are limited to find, insert, and delete.

• Dynamic hash tables have good amortized 
complexity.


