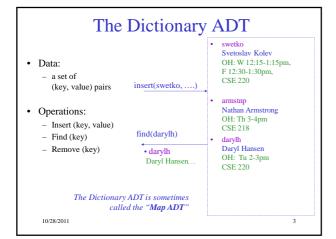


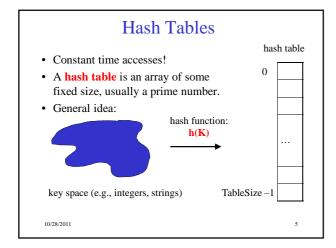
Today's Outline

- Announcements
 - Homework #4 coming:
 - · Java programming: disjoint sets and mazes
 - · due Thurs, Nov 10th
 - · partners allowed
- Today's Topics:
 - Disjoint Sets & Dynamic Equivalence
 - Hashing

10/28/2011 2



Dictionary Implementations For dictionary with n key/value pairs find insert · Unsorted linked-list 0(1) * O(n)O(n)0(1) * Unsorted array O(n)O(n)Sorted linked list O(n)O(n)O(n)Sorted array O(n) $O(\log n)$ O(n)BST AVL Tree 10/28/2011 *Note: If we do not allow duplicates values to be inserted, we would need to do O(n) work (a find operation) to check for a key's existence before insertion



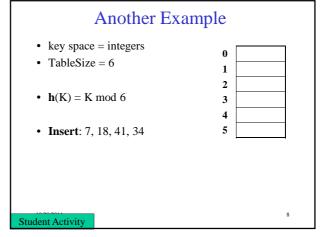
Hash Tables

Key space of size M, but we only want to store subset of size N, where N << M.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.

10/28/2011 6

Example • key space = integers • TableSize = 10 • h(K) = K mod 10 • Insert: 7, 18, 41, 94 6 7 8 9



Hash Functions

- 1. simple/fast to compute,
- 2. Avoid collisions
- 3. have keys distributed **evenly** among cells.

Perfect Hash function:

10/28/2011

Sample Hash Functions:

- key space = strings
- $s = s_0 s_1 s_2 \dots s_{k-1}$

10/28/2011

- 1. $h(s) = s_0 \mod TableSize$
- 2. $h(s) = \left(\sum_{i=0}^{k-1} s_i\right)$ mod TableSize
- 3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^{-i}\right) \mod Table Size$

Designing a Hash Function for web URLs

$$s = s_0 s_1 s_2 \dots s_{k-1}$$

Issues to take into account:

h(s) =

Student Activity

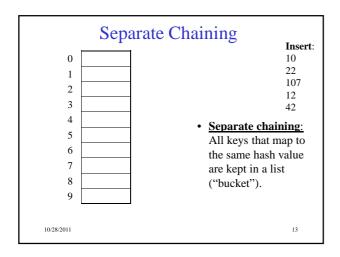
Collision Resolution

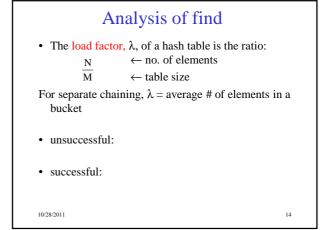
Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- Open Addressing (linear probing, quadratic probing, double hashing)

10/28/2011





How big should the hash table be?

• For Separate Chaining:

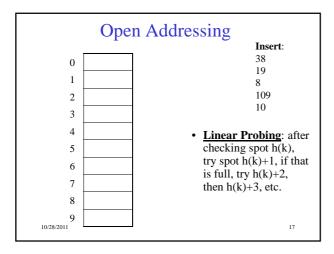
tableSize: Why Prime?

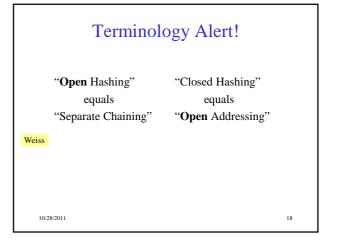
• Suppose

- data stored in hash table: 7160, 493, 60, 55, 321, 900, 810

- tableSize = 10 data hashes to 0, 3, 0, 5, 1, 0, 0- tableSize = 11 data hashes to 10, 9, 5, 0, 2, 9, 7Real-life data tends to have a pattern

Being a multiple of 11 is usually not the pattern 3





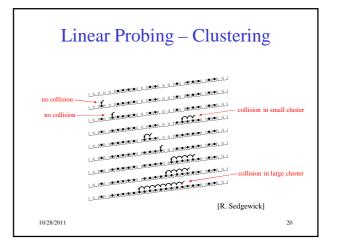
Linear Probing

f(i) = i

• Probe sequence:

 $\begin{aligned} 0^{th} & probe = \ h(k) \ mod \ TableSize \\ 1^{th} & probe = (h(k)+1) \ mod \ TableSize \\ 2^{th} & probe = (h(k)+2) \ mod \ TableSize \\ & \dots \\ & i^{th} & probe = (h(k)+i) \ mod \ TableSize \end{aligned}$

10/28/2011 19



Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$$

- unsuccessful search:

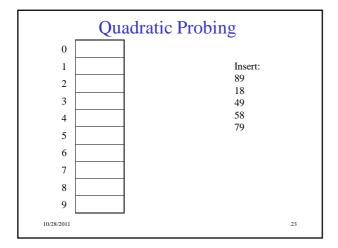
$$\frac{1}{2} \left(1 + \frac{1}{\left(1 - \lambda \right)^2} \right)$$

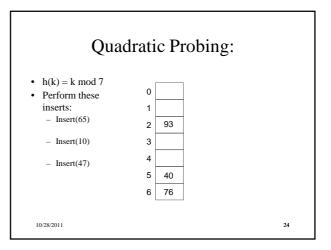
21

- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2\,$

10/28/2011

$\begin{array}{c} \textbf{Quadratic Probing} \\ f(i) = i^2 \end{array} \end{array} \ \, \begin{array}{c} \textbf{Less likely to encounter} \\ \textbf{Probe sequence:} \\ \textbf{0^{th} probe} = h(k) \text{ mod TableSize} \\ \textbf{1^{th} probe} = (h(k) + 1) \text{ mod TableSize} \\ \textbf{2^{th} probe} = (h(k) + 4) \text{ mod TableSize} \\ \textbf{3^{th} probe} = (h(k) + 9) \text{ mod TableSize} \\ \vdots \\ \textbf{i^{th} probe} = (h(k) + i^2) \text{ mod TableSize} \\ \end{array}$





Quadratic Probing Example insert(76) insert(40) insert(55) insert(48) insert(5) 76%7 = 6 40%7 = 5 48%7 = 6 5%7 = 5 55%7 = 6 But... insert(47) 47%7 = 5 76 10/28/2011

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all 0 ≤ i,j ≤ size/2 and i ≠ j
 - $(h(x) + i^2) \mod size \neq (h(x) + j^2) \mod size$
 - by contradiction: suppose that for some i ≠ j: $(h(x) + i^2)$ mod size = $(h(x) + j^2)$ mod size
 - \Rightarrow i² mod size = j² mod size
 - $\Rightarrow (i^2 j^2) \text{ mod size} = 0$ $\Rightarrow [(i + j)(i j)] \text{ mod size} = 0$ BUT size does not divide (i-j) or (i+j)

10/28/2011

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ , quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad
- But what about keys that hash to the same spot?
 - Secondary Clustering!

10/28/2011 27

Double Hashing

$$f(i) = i * g(k)$$

where g is a second hash function

• Probe sequence:

 $0^{th} \text{ probe} = h(k) \text{ mod TableSize}$

 1^{th} probe = (h(k) + g(k)) mod TableSize

 2^{th} probe = (h(k) + 2*g(k)) mod TableSize

 3^{th} probe = (h(k) + 3*g(k)) mod TableSize

 i^{th} probe = $(h(\underline{k}) + i*g(\underline{k}))$ mod TableSize

10/28/2011 28

Double Hashing Example i^{th} probe = (h(k) + i*g(k)) mod TableSize

 $h(k) = k \mod 7$ and $g(k) = 5 - (k \mod 5)$

76	93	40	47	10	55
0	0	0	0	0	0
1	1	1	1 47	1 47	1 47
2	2 93	2 93	2 93	2 93	2 93
3	3	3	3	3 10	3 10
4	4	4	4	4	4 55
5	5	5 40	5 40	5 40	5 40
6 76	6 76	6 76	6 76	6 76	6 76
Probes 1	1	1	2	1	2
10/28/2011					29

Resolving Collisions with Double Hashing

Hash Functions: $H(k) = k \mod M$ $H_2(k) = 1 + ((k/M) \mod (M-1))$ M =

Insert these values into the hash table in this order. Resolve any collisions with double hashing: 13 28 33 147

43 10/28/2011

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

10/28/2011

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.

10/28/2011 32