
1

10/28/2011 1

Hashing
Chapter 5 in Weiss

CSE 373

Data Structures and Algorithms

Ruth Anderson

10/28/2011 2

Today’s Outline
• Announcements

– Homework #4 coming:
• Java programming: disjoint sets and mazes
• due Thurs, Nov 10th

• partners allowed

• Today’s Topics:
– Disjoint Sets & Dynamic Equivalence
– Hashing

3

The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes
called the “Map ADT”

• swetko
Svetoslav Kolev
OH: W 12:15-1:15pm,
F 12:30-1:30pm,
CSE 220

• armstnp
Nathan Armstrong
OH: Th 3-4pm
CSE 218

• darylh
Daryl Hansen
OH: Tu 2-3pm
CSE 220

insert(swetko, ….)

find(darylh)

• darylh
Daryl Hansen, …

10/28/2011

Dictionary Implementations
For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list O(1) * O(n) O(n)

• Unsorted array O(1) * O(n) O(n)

• Sorted linked list O(n) O(n) O(n)
• Sorted array O(n) O(log n) O(n)

• BST

• AVL Tree

*Note: If we do not allow duplicates values to be inserted, we would need to do
O(n) work (a find operation) to check for a key’s existence before insertion

410/28/2011

10/28/2011 5

Hash Tables

• Constant time accesses!

• A hash tableis an array of some
fixed size, usually a prime number.

• General idea:

key space (e.g., integers, strings)

0

…

TableSize –1

hash function:
h(K)

hash table

10/28/2011 6

Hash Tables
Key space of size M, but we only want to store
subset of size N, where N<<M.

– Keys are identifiers in programs. Compiler keeps track
of them in a symbol table.

– Keys are student names. We want to look up student
records quickly by name.

– Keys are chess configurations in a chess playing
program.

– Keys are URLs in a database of web pages.

2

10/28/2011 7

Example
• key space = integers

• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94

0

1

2

3

4

5

6

7

8

9

10/28/2011 8

Another Example
• key space = integers

• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34

0

1

2

3

4

5

Student Activity

10/28/2011 9

Hash Functions
1. simple/fastto compute,

2. Avoid collisions

3. have keys distributed evenlyamong cells.

Perfect Hash function:

10/28/2011 10

Sample Hash Functions:
• key space = strings

• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize









∑

−

=

1

0

k

i
is








 ⋅∑
−

=

1

0

37
k

i

i
is

10/28/2011 11

Designing a Hash Function for web URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =

Student Activity
10/28/2011 12

Collision Resolution
Collision: when two keys map to the same location

in the hash table.

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing, quadratic
probing, double hashing)

3

10/28/2011 13

Separate Chaining

• Separate chaining:
All keys that map to
the same hash value
are kept in a list
(“bucket”).

0

1

2

3

4

5

6

7

8

9

Insert:
10
22
107
12
42

10/28/2011 14

Analysis of find
• The load factor,λ, of a hash table is the ratio:

← no. of elements

← table size

For separate chaining, λ = average # of elements in a
bucket

• unsuccessful:

• successful:

M

N

10/28/2011 15

How big should the hash table be?

• For Separate Chaining:

10/28/2011 16

tableSize: Why Prime?
• Suppose

– data stored in hash table: 7160, 493, 60, 55, 321, 900, 810

– tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends
to have a pattern

Being a multiple of
11 is usually not the
pattern ☺

10/28/2011 17

Open Addressing

0

1

2

3

4

5

6

7

8

9

Insert:
38
19
8
109
10

• Linear Probing: after
checking spot h(k),
try spot h(k)+1, if that
is full, try h(k)+2,
then h(k)+3, etc.

10/28/2011 18

Terminology Alert!

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”

Weiss

4

10/28/2011 19

Linear Probing
f(i) = i

• Probe sequence:
0th probe = h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize

. . .

i th probe = (h(k) + i) mod TableSize

10/28/2011 20

Linear Probing – Clustering

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster

10/28/2011 21

Load Factor in Linear Probing
• For anyλ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

() 








−
+ 21

1
1

2

1

λ

()







−
+

λ1

1
1

2

1

10/28/2011 22

Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
i th probe = (h(k) + i2) mod TableSize

Less likely to
encounter
Primary
Clustering

10/28/2011 23

Quadratic Probing
0

1

2

3

4

5

6

7

8

9

Insert:
89
18
49
58
79

10/28/2011 2424

Quadratic Probing:

0

1

2

3

4

5

6 76

40

93

• h(k) = k mod 7
• Perform these

inserts:
– Insert(65)

– Insert(10)

– Insert(47)

5

10/28/2011 25

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…

10/28/2011 26

Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will find an
empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i2) mod size ≠≠≠≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

⇒⇒⇒⇒ i2 mod size = j2 mod size
⇒⇒⇒⇒ (i2 - j2) mod size = 0
⇒⇒⇒⇒ [(i + j)(i - j)] mod size = 0

BUT size does not divide(i-j) or (i+j)

10/28/2011 27

Quadratic Probing: Properties

• For anyλ < ½, quadratic probing will find an empty
slot; for bigger λ, quadratic probing mayfind a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same areaare not bad

• But what about keys that hash to the samespot?
– Secondary Clustering!

10/28/2011 28

Double Hashing

f(i) = i * g(k)
where g is a second hash function

• Probe sequence:
0th probe = h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize

2th probe = (h(k) + 2*g(k)) mod TableSize

3th probe = (h(k) + 3*g(k)) mod TableSize

. . .

i th probe = (h(k) + i*g(k)) mod TableSize

10/28/2011 29

Double Hashing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

93

10

55

40

76

55

i th probe = (h(k) + i*g(k)) mod TableSize
h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes 1 1 1 2 1 2

10/28/2011 30

Resolving Collisions with Double Hashing
0

1

2

3

4

5

6

7

8

9

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

Hash Functions:
H(k) = k mod M
H2(k) = 1 + ((k/M) mod (M-1))
M =

6

10/28/2011 31

Idea: When the table gets too full, create a bigger
table (usually 2x as large) and hash all the items
from the original table into the new table.

• When to rehash?
– half full (λ = 0.5)

– when an insertion fails

– some other threshold

• Cost of rehashing?

Rehashing

10/28/2011 32

Hashing Summary
• Hashing is one of the most important data

structures.

• Hashing has many applications where operations
are limited to find, insert, and delete.

• Dynamic hash tables have good amortized
complexity.

