## Graphs:

Minimum Spanning Trees (Chapter 9)

CSE 373
Data Structures and Algorithms

## Today's Outline

- Admin:
- Midterm \#2 - Friday Nov $18^{\text {th }}$, topic list has been posted
- HW \#5 - Graphs, partners allowed, due after Thanksgiving
- Graphs
- Shortest Paths
- Minimum Spanning Trees


## Minimum Spanning Trees

Given an undirected graph $G=(V, E)$, find a graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that:

- $E^{\prime}$ is a subset of $E$
$-\left|E^{\prime}\right|=|V|-1$


## $G^{\prime}$ is a minimum

spanning tree.

$$
-\sum_{(u, v) \in E^{\prime}} \mathrm{C}_{u v} \quad \text { is minimal }
$$

Applications:

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time



## Two Different Approaches



Prim's Algorithm Almost identical to Dijkstra's

Kruskals's Algorithm Completely different!

## Prim's algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."
A node-based greedy algorithm
Builds MST by greedily adding nodes


11/16/2011

## Prim's Algorithm vs. Dijkstra's

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.
Prim's pick the unknown vertex with smallest cost where
cost = distance from this vertex to the known set (in other words,
the cost of the smallest edge connecting this vertex to the known set)

- Otherwise identical
- Compare to slides in Dijkstra lecture!


## Example: Find MST using Prim's



| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A |  | $? ?$ |  |
| B |  | $? ?$ |  |
| C |  | $? ?$ |  |
| D |  | $? ?$ |  |
| E |  | $? ?$ |  |
| F |  | $? ?$ |  |
| G |  | $? ?$ |  |

11/16/2011

Example: Find MST using Prim's


| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B |  | 2 | A |
| C |  | 2 | A |
| D |  | 1 | A |
| E |  | $? ?$ |  |
| F |  | $? ?$ |  |
| G |  | $? ?$ |  |

11/16/2011

## Example: Find MST using Prim's



| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B |  | 2 | A |
| C |  | 1 | D |
| D | Y | 1 | A |
| E |  | 1 | $D$ |
| F |  | 6 | $D$ |
| G |  | 5 | $D$ |

## Example: Find MST using Prim's



| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B |  | 2 | A |
| C | $Y$ | 1 | D |
| D | Y | 1 | A |
| E |  | 1 | D |
| F |  | 2 | C |
| G |  | 5 | D |

11/16/2011
12

## Example: Find MST using Prim's



| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | $Y$ | 0 |  |
| B |  | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F |  | 2 | C |
| G |  | 3 | E |

11/16/2011 13

## Example: Find MST using Prim's



| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B | Y | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F |  | 2 | C |
| G |  | 3 | E |

11/16/2011

Example: Find MST using Prim's


| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B | Y | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F | Y | 2 | C |
| G |  | 3 | E |

11/16/2011
15

Example: Find MST using Prim's


| vertex | known? | cost | prev |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B | Y | 1 | E |
| C | Y | 1 | D |
| D | Y | 1 | A |
| E | Y | 1 | D |
| F | Y | 2 | C |
| G | Y | 3 | E |

11/16/2011


## Prim's Analysis

- Correctness ??
- Intuitively similar to Dijkstra
- Run-time
- Same as Dijkstra
- $O(|E| \log |\mathrm{V}|)$ using a priority queue


## Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.


11/16/2011

## Kruskal's pseudo code

void Graph::kruskal()
int edgesAccepted $=0$;
DisjSet s(NUM_VERTICES);


## Kruskal's Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with

- empty MST
- all vertices marked unconnected
- all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge ( $u, v$ ) and mark it
b. If $u$ and $v$ are not already connected, add ( $\mathbf{u}, \mathrm{v}$ ) to the MST and mark $u$ and $v$ as connected to each other

Find MST using Kruskal's


Total Cost:

- Now find the MST using Prim's method.
- Under what conditions will these methods give the same result?

11/16/2011

## Example: Find MST using Kruskal's



Output:

Note: At each step, the union/find sets are the trees in the forest

## Example: Find MST using Kruskal's



Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

## Example: Find MST using Kruskal's



Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

11/16/2011

## Example: Find MST using Kruskal's



Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

## Example: Find MST using Kruskal's



Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

## Example: Find MST using Kruskal's



Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

## Example: Find MST using Kruskal's



Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
11/16/2011
28

## Example: Find MST using Kruskal's



Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

## Example: Find MST using Kruskal's



Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

