Today’s Outline

e Admin:
— Midterm #2 — Friday Nov 118 topic list has been posted
— HW #5 — Graphs, partners due Wed 23 at 11pm, due

B-Trees Thurs Dec 1 at 11pm
(4.7 in Weiss)
* Graphs
— Minimum Spanning Trees
CSE 373) + Dictionaries
Data Structures & Algorithms — B-Trees
Ruth Anderson
11/21/2011 11/21/2011 2
Trees SO far cPU TIime to access:
(has registers) 1 ns per instruction

* BST

« AVL

11/21/2011

SRAM Cache

Cache
8KB - 4MB 2.10ns

Main Memory
DRAM Main Memory
up to 10(GB 40-100 ns
I
Disk Disk afew
many GB s 1SX milliseconds
(5-10 Million ns)
11/21/2011 4

M-ary Search Tree
O

* Maximum branching factor of
« Complete tree has height =

disk accesses fdind:

Runtime offind:

11/21/2011

Solution: B-Trees
» specializedV-ary search trees

« Eachnode has (up to) M-1 keys:

— subtree between two keysandy contains

leaves withvalues v such that
X<v<y

« Pick branching factor M
such that each node

takes one full
{ pa‘gel bl OCk} A_ 3< 7 < 12 12< 21 21

of memory
11/21/2011 6

B-Trees

What makes them disk-friendly?

1. Many keysstored in anode
e All brought to memory/cache in one access!

2. Internal nodes contaomly keys;
Only leaf nodes contain keysand actual data

« The tree structure can be loaded into memory
irrespective of data object size

e Data actually resides in disk

11/21/2011 7

B-Tree: Example

B-Tree withM = 4 (# pointersin internal node)
(#dataitemsin L eaf)

andL = 4

[adla2] [|
[30[32[33[3¢] [5060[70]]

Data objects, that I'll ignore in slides

11/21/2011
Note: All leaves at the same depth!

B-Tree Propertie$

— Data is stored at tHeaves

— All leavesare at the same depth and contain betweg
[L/2] andL data items

— Internalnodes store up tel-1 keys
— Internalnodes have betweéM/2]andM children

— Root(special case) has between 2 &hdhildren
(or root could be a leaf)

11/21/2011 fThese are technically*Blrees °

Example, Again

B-Tree withM = 4
andL = 4

[i[2] [] [20[1af29 | [20[25]26] |
[3]5]6]9] 517] [30[32[33[3¢] [5060[70]]

(Only showing keys, but leaves also have data!)
11/21/2011 10

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

« Depth of AVL Tree

¢ Depth of B+ Tree with M =128, = 64

11/21/2011 11

Building a B-Tree

1] (3]
Insert@) Insert(L4)
The empty
B-Tree
M=3L =2

Now, Insert()?

11/21/2011 12

M=3L =2

M=3L =2 1+t1 .
Splitting the Root Overflowing leaves oo many
keys in a leaf!
Too many
keys in a leaf!
o Insert69) Insert@6) |
Insert(l) /| And create
; i t H 4
anewtoo
so,split the leaf
So, split the leaf.
And add
a new child
11/21/2011 13 11/21/2011 14
M=

Propagating Splits

Insertf)

Add new

Split the leaf, but no space in parent!

child

Insertion Algorithm

1. Insert the key in its leaf 3. If an internal node ends up

2. If the leaf ends up with L+1 With M+1 itemsoverflow!
items,over flow! — Split the node into two nodes:

— Split the leaf into two nodes: + original with [(M+1) / 2]items
« original with [(L+1) / 2]items « new one with (Mr1) / 2 Jitems

+ new one witt (L+1) / 2Jitems — Add the new child to the parent
— Add the new child to the parent ~ — If the parent ends up witt#1
— If the parent ends up witi#1 items, over flow!
items,over flow!
4. Split an overflowed root in

Insert@9)
Insert(79)

11/21/2011

Create a
new root 1 and hang the new nodes undg
This makes the tree deepe/r/! anew root
SO, Spllt the node, = 11/21/2011 16
M=3L -2] M=3L -2]
After More Routine Inserts Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

Delete69)

What could go wrong?

(5]] I

11/21/2011

Deletion and Adoption

A leaf has too few keys!

Deletep)

11/21/2011

19

Does Adoption Always Work?

» What if the sibling doesn’t have enough for you to
borrow from?

e.g. you havéL/2]-1 and sibling halsL/2] ?

11/21/2011 20

Deletion and Merging

A leaf has too few keys!

Delete@)

And no sibling with surplus!

So, delete

the leaf

21

But now an internal node
11/21{2011
has 100 few subtrees!

w=3L-2Deletion with Propagatio
(More Adoption)

Adopt a
neighbor

11/21/2011 22

Delete()
(adopt a
sibling)

11/21/2011 23

M=3 L .2
ﬁU”mg OUt the ROOt A leaf has too few keys!

And no sibling with surplus!

Delete@6) So, delet
the leaf;
merge
But now theroot A node has too few subtrees

has just one subtree! and no neighbor with surplus!

Delete
the node

24

M=3L =2

Pulling out the Root (continued)

Theroot
has just one subtree!

Simply make
the one child
the new root!

11/21/2011

Deletion Algorithm

. Remove the key from its leaf

. If theleaf ends up with fewer

than['L/ 27items,under flow!

— Adopt data from a sibling;
update the parent

— If adopting won't work, delet
node and merge with neighbor

— If the parent ends up with
fewer tharfm 27items,

under flow!
11/21/2011 26

Deletion Slide Two

3. If aninternal node ends up with
fewer tharf M 27items,under flow!
— Adopt from a neighbor;
update the parent

— If adoption won't work,
merge with neighbor

— If the parent ends up with fewer than
'™ 27items,under flow!
This reduces the
4. If the root ends up with only on /// height of the tree!
child, make the child the new root
of the tree

11/21/2011 27

Thinking about B-Trees

B-Treeinsertion can cause (expensive) splitting
and propagation

B-Treedeletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation
Propagation is rare MandL are large

(Why?)

If M= L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

11/21/2011 28

Tree Names You Might Encounter

FYI:
— B-Trees withM = 3,L = x are called2-3 trees
« Nodes can have 2 or 3 pointers
— B-Trees withM = 4, L = x are called-3-4 trees
« Nodes can have 2, 3, or 4 pointers

11/21/2011 29

Determining M and L for a B-Tree
1 Page on disk = 1 KByte
Key = 8 bytes, Pointer = 4 bytes
Data = 256 bytes per record (includes key)

