Math Review

CSE 373
Data Structures \& Algorithms
Ruth Anderson
Autumn 2012
9/28/2012
CSE 373 12au - Math Review

Today's Outline

- Announcements
- Assignment \#1 due Thurs, Oct 4 at 11 pm
- Math Review
- Proof by Induction
- Powers of 2
- Binary numbers
- Exponents and Logs
- Algorithm Analysis

Mathematical Induction

Suppose we wish to prove that:
For all $n \geq n_{0}$, some predicate $P(n)$ is true.
We can do this by proving two things:

1. $\mathrm{P}\left(\mathrm{n}_{0}\right)$ - this is called the "base case" or "basis."
2. If $P(k)$, then $P(k+1)$ - this is called the "induction step" or "inductive case"
Note: We prove 2. by assuming $\mathrm{P}(\mathrm{k})$ is true.
Putting these together, we show that $\mathrm{P}(\mathrm{n})$ is true.
CSE 373 12au - Math Review

Example

Prove: for all $\mathrm{n} \geq 1$, sum of first n powers of $2=2^{\mathrm{n}}-1$

$$
2^{0}+2^{1}+2^{2}+\ldots+2^{n-1}=2^{n}-1 .
$$

in other words: $\quad 1+2+4+\ldots+2^{n-1}=2^{n}-1$.

Example Proof by Induction

Theorem: $P(n)$ holds for all $n \geq 1$
Proof: By induction on n

- Base case, $n=1: \quad 2^{0}=1=2^{1}-1$
- Induction step:
- Inductive hypothesis: Assume the sum of the first k powers of 2 is $2^{\mathrm{k}}-1$
- Given the hypothesis, show that:
the sum of the first $(k+1)$ powers of 2 is $2^{k+1}-1$
From our inductive hypothesis we know:

$$
1+2+4+\ldots+2^{k-1}=2^{k}-1
$$

Add the next power of 2 to both sides..
$1+2+4+\ldots+2^{k-1}+2^{k}=2^{k}-1+2^{k}$
We have what we want on the left; massage the right a bit:
$1+2+4+\ldots+2^{k-1}+2^{k}=2\left(2^{k}\right)-1=2^{k+1}-1$
9/28/2012
CSE 373 12au - Math Review

Example: Putting it all together

- Inductive hypothesis: (We assumed this was true) $1+2+4+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}}-1$
- Induction step: (Adding 2^{k} to both sides)
$1+2+4+\ldots 2^{\mathrm{k}-1}+2^{\mathrm{k}}=2^{\mathrm{k}}-1+2^{\mathrm{k}}=2\left(2^{\mathrm{k}}\right)-1=2^{\mathrm{k}+1}-1$
Therefore if the equation is valid for $n=k$, it must also be valid for $\mathrm{n}=\mathrm{k}+1$.

Summary: Our theorem is valid for $\mathrm{n}=1$ (base case) and by the induction step it is therefore valid for $n=2, n=3, \ldots$

Thus, it is valid for all integers greater than or equal to 1.
9/28/2012
CSE 373 12au - Math Review
7

N bits can represent how many things?
$\frac{\text { \# Bits }}{1} \quad$ Patterns \quad \# of patterns

2

Powers of 2

- A bit is 0 or 1
- A sequence of n bits can represent 2^{n} distinct things
- For example, the numbers 0 through $2^{\mathrm{n}}-1$
- 2^{10} is 1024 ("about a thousand", kilo in CSE speak)
- 2^{20} is "about a million", mega in CSE speak
- 2^{30} is "about a billion", giga in CSE speak

Java:

- an int is 32 bits and signed, so "max int" is "about 2 billion"
- a long is 64 bits and signed, so "max long" is $2^{63}-1$

9/28/2012
CSE 373 12au - Math Review
11

Powers of 2

- Many of the numbers we use in Computer Science are powers of 2
- Binary numbers (base 2) are easily represented in digital computers
- each "bit" is a 0 or a 1
- an n-bit wide field can represent how many different things?

0000000000101011
9/28/2012
CSE 373 12an - Math Review
8

Unsigned binary numbers

- For unsigned numbers in a fixed width field
- the minimum value is 0
- the maximum value is $2^{\mathrm{n}}-1$, where n is the number of
bits in the field
- The value is $\quad \sum_{i=0}^{i=n-1} a_{i} 2^{i}$
- Each bit position represents a power of 2 with $a_{i}=0$ or $a_{i}=1$

Logarithms and Exponents

- Definition: $\log _{2} x=y$ if and only if $x=2^{y}$
$8=2^{3}$, so $\log _{2} 8=3$
$65536=2^{16}$, so $\log _{2} 65536=16$
- Notice that $\log _{2} n$ tells you how many bits are needed to distinguish among n different values.
8 bits can hold any of 256 numbers, for example: 0 to $2^{8}-1$, which is 0 to 255
$\log _{2} 256=8$

9/28/2012
CSE 373 12au - Math Review
12

Therefore..

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with $250-300$ bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Logarithms and Exponents

- Since so much is binary in CS, log almost always means $\mathbf{l o g}_{2}$
- Definition: $\log _{2} \mathbf{x}=\mathbf{y}$ if $\mathbf{x}=2^{\mathbf{y}}$
- So, $\boldsymbol{1 o g}_{2} 1,000,000=$ "a little under $20 "$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file
for plot data -
play with it!

9/28/2012

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

Floor and Ceiling
$\lfloor X\rfloor$ Floor function: the largest integer $\leq X$
$\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2$
$\lceil X\rceil$ Ceiling function: the smallest integer $\geq \mathrm{X}$
$\lceil 2.3\rceil=3 \quad\lceil-2.3\rceil=-2 \quad\lceil 2\rceil=2$

Properties of logs

- We will assume logs to base 2 unless specified otherwise.
- $\mathrm{x}=\log _{2} 2^{\mathrm{x}}$
- $8=2^{3}$, so $\log _{2} 8=3$, so $2^{\left(\log _{2} 8\right)}=$ \qquad -
Show:

$$
\begin{gathered}
\log (\mathrm{A} \cdot \mathrm{~B})=\log \mathrm{A}+\log \mathrm{B} \\
\mathrm{~A}=2^{\log _{2} \mathrm{~A}} \text { and } \mathrm{B}=2^{\log _{2} \mathrm{~B}} \\
\mathrm{~A} \bullet \mathrm{~B}=2^{\log _{2} \mathrm{~A}} \bullet 2^{\log _{2} \mathrm{~B}}=2^{\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B}} \\
\text { So: } \quad \log _{2} \mathrm{AB}=\log _{2} \mathrm{~A}+\log _{2} \mathrm{~B} \\
\text { Note: } \quad \begin{array}{l}
\log \mathrm{AB} \neq \log \mathrm{A} \bullet \log \mathrm{~B}!! \\
\text { Also, it follows that } \log \left(\mathrm{N}^{\mathrm{k}}\right)=\mathrm{k} \quad \log \underset{23}{\mathrm{~N}} \\
\text { CSE 373 12au-Math Review }
\end{array} \\
\hline
\end{gathered}
$$

Facts about Floor and Ceiling

1. $X-1<\lfloor X\rfloor \leq X$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$ if n is an integer

Other \log properties

- $\log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B}$
- $\log \left(\mathrm{A}^{\mathrm{B}}\right)=\mathrm{B} \log \mathrm{A}$
- $\log \log X<\log X<X \quad$ for all $X>0$
$-\log \log \mathrm{X}=\mathrm{Y}$ means: $2^{2^{\gamma}}=\mathrm{X}$
- Ex. $\quad \log _{2} \log _{2}$ 4billion $\sim \log _{2} \log _{2} 2^{32}=\log _{2} 32=5$
- $\log X$ grows more slowly than X
- called a "sub-linear" function
- $(\log x)(\log x)$ is written $\log ^{2} x$ (aka "log-squared")
- It is greater than $\log x$ for all $x>2$
- Note: $\log \log X \neq \log ^{2} X$

9282012
CSE 373 12au - Math Review

$$
-2
$$

A \log is a \log is a \log

- "Any base $\mathrm{B} \log$ is equivalent to base $2 \log$ within a constant factor."

$$
\begin{aligned}
& B=2^{\log _{2} B} \\
& \log _{B} X=\log _{B} X \\
& x=2^{\log _{2} x} \\
& \text { substitution }(B)^{\log _{B} X}=X \quad B^{\log _{B} X}=X \\
& \left(2^{\log _{2} \mathrm{~B}}\right)^{\log _{8} \mathrm{X}}=2^{\log _{2} \mathrm{x}} \text { by def. of } \operatorname{logs}^{2} \\
& 2^{\log _{2} B \log _{b} x}=2^{\log _{2} x} \\
& \log _{2} B \log _{B} X=\log _{2} X \\
& \log _{B} X=\frac{\log _{2} X}{\log _{2} B}
\end{aligned}
$$

Log base doesn't matter (much)

"Any base $B \log$ is equivalent to base $2 \log$ within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} \mathbf{x}=3.22 \log _{10} \mathbf{x}$
- In general, we can convert log bases via a constant multiplier
- To convert from base B to base A:
$\log _{\mathrm{B}} \mathbf{x}=\left(\log _{\mathrm{A}} \mathbf{x}\right) /\left(\log _{\mathrm{A}} \mathrm{B}\right)$

Arithmetic Sequences

$\mathrm{N}=\{0,1,2, \ldots\}=$ natural numbers
$[0,1,2, \ldots]$ is an infinite arithmetic sequence
$[a, a+d, a+2 d, a+3 d, \ldots]$ is a general infinite arith. sequence.
There is a constant difference between terms.

$$
1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

Analyzing the Loop

- Total number of times x is incremented is executed $=$

$$
1+2+3+\ldots+N=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You've just analyzed your first program!

[^0]29

Algorithm Analysis Examples

- Consider the following program segment:
$x:=0$;
for $i=1$ to N do
for $j=1$ to i do
$x:=x+1$;
- What is the value of x at the end?

When did you take cse 143

Numeric			
value $_{1}$	Answer 0 - summer 12	$\text { Frequency }_{1}$	$\begin{aligned} & \text { Percentage } \\ & 1.01 \% \end{aligned}$
2	1 - spring 12	18	18.18\%
3	2 - winter 12	27	27.27\%
4	3 - autumn 11	6	6.068
5	4 - summer 11	3	3.03\%
6	5 - spring 11	8	8.08\%
7	6 - Before spring 11	${ }^{23}$	23.23\%
8	7 - I did not take cse 143 at UW (AP or transfer credit)	10	10.10\%
9	Other:	3	3.03\%
9/28/2012	CSE 373 12au - Math Review		30

[^0]: - Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
 - Big-O ??

 9/28/2012
 CSE 373 12au - Math Review

