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Today’s Outline

• Announcements
– Assignment #1, due Thurs, Oct 4 at 11pm
– Assignment #2, posted later this week, due Fri Oct 12 at 

BEGINNING of lecture

• Algorithm Analysis
– How to compare two algorithms?
– Analyzing code
– Big-Oh
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Comparing Two Algorithms…
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What we want

• Rough Estimate
• Ignores Details
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Big-O Analysis

• Ignores “details”
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Gauging performance
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• Uh, why not just run the program and time it?
– Too much variability; not reliable:

• Hardware: processor(s), memory, etc.

• OS, version of Java, libraries, drivers
• Programs running in the background

• Implementation dependent
• Choice of input

– Timing doesn’t really evaluate the algorithm; it evaluates an 
implementation in one very specific scenario
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Comparing algorithms

When is one algorithm (not implementation) better than another?
– Various possible answers (clarity, security, …)
– But a big one is performance: for sufficiently large inputs, 

runs in less time (our focus) or less space

We will focus on large inputs (n) because probably any algorithm is 
“plenty good” for small inputs (if n is 10, probably anything is fast 
enough)

Answer will be independent of CPU speed, programming language, 
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up 
and timing it on some test cases”
– Can do analysis before coding!
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Why Asymptotic Analysis?

• Most algorithms are fast for small n
– Time difference too small to be noticeable
– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice

– Databases, internet, graphics, …

• Time difference really shows up as n grows!

8

Analyzing code (“worst case”)

Basic operations  take “some amount of” constant time
– Arithmetic (fixed-width)
– Assignment

– Access one Java field or array index
– Etc.

(This is an approximation.)

Consecutive statements Sum of times

Conditionals Time of test plus slower branch
Loops Sum of iterations

Calls Time of call’s body
Recursion Solve recurrence equation
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Example

Find an integer in a sorted array
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2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

???
}

Linear search

Find an integer in a sorted array
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2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case:

Worst case:

Linear search

Find an integer in a sorted array
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2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case: 6ish steps = O(1)
Worst case: 6ish*(arr.length)  

= O(arr.length)
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Binary search

Find an integer in a sorted array    

10/01/2012 13

2 3 5 16 37 50 73 75 126

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
if(lo==hi)      return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Binary search

10/01/2012 14

// requires array is sorted     
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi)      return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Best case: 8ish steps = O(1)
Worst case: T(n) = 10ish + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

Solving Recurrence Relations

1. Determine the recurrence relation.  What is the base case?
T(n) = 10 + T(n/2) T(1) = 13 “ish”

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case
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Solving Recurrence Relations

1. Determine the recurrence relation.  What is the base case?
T(n) = 10 + T(n/2) T(1) = 13

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions.

T(n)  = 10 + 10 + T(n/4)
= 10 + 10 + 10 + T(n/8)
= …
= 10k + T(n/(2k))

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n
– So T(n) = 10 log2 n + 13  (get to base case and do it)
– So T(n) is O(log n)
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