
10/1/2012

1

Asymptotic Analysis

CSE 373
Data Structures & Algorithms

Ruth Anderson
Autumn 2012

10/01/2012

Today’s Outline

• Announcements
– Assignment #1, due Thurs, Oct 4 at 11pm
– Assignment #2, posted later this week, due Fri Oct 12 at

BEGINNING of lecture

• Algorithm Analysis
– How to compare two algorithms?
– Analyzing code
– Big-Oh

2

Comparing Two Algorithms…

10/01/2012 3

10/1/2012

2

10/01/2012

What we want

• Rough Estimate
• Ignores Details

4

10/01/2012

Big-O Analysis

• Ignores “details”

5

Gauging performance

6

• Uh, why not just run the program and time it?
– Too much variability; not reliable:

• Hardware: processor(s), memory, etc.

• OS, version of Java, libraries, drivers
• Programs running in the background

• Implementation dependent
• Choice of input

– Timing doesn’t really evaluate the algorithm; it evaluates an
implementation in one very specific scenario

10/01/2012

10/1/2012

3

Comparing algorithms

When is one algorithm (not implementation) better than another?
– Various possible answers (clarity, security, …)
– But a big one is performance: for sufficiently large inputs,

runs in less time (our focus) or less space

We will focus on large inputs (n) because probably any algorithm is
“plenty good” for small inputs (if n is 10, probably anything is fast
enough)

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up
and timing it on some test cases”
– Can do analysis before coding!

10/01/2012 7

10/01/2012

Why Asymptotic Analysis?

• Most algorithms are fast for small n
– Time difference too small to be noticeable
– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice

– Databases, internet, graphics, …

• Time difference really shows up as n grows!

8

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time
– Arithmetic (fixed-width)
– Assignment

– Access one Java field or array index
– Etc.

(This is an approximation.)

Consecutive statements Sum of times

Conditionals Time of test plus slower branch
Loops Sum of iterations

Calls Time of call’s body
Recursion Solve recurrence equation

10/01/2012 9

10/1/2012

4

Example

Find an integer in a sorted array

10/01/2012 10

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

???
}

Linear search

Find an integer in a sorted array

10/01/2012 11

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case:

Worst case:

Linear search

Find an integer in a sorted array

10/01/2012 12

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case: 6ish steps = O(1)
Worst case: 6ish*(arr.length)

= O(arr.length)

10/1/2012

5

Binary search

Find an integer in a sorted array

10/01/2012 13

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Binary search

10/01/2012 14

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Best case: 8ish steps = O(1)
Worst case: T(n) = 10ish + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
T(n) = 10 + T(n/2) T(1) = 13 “ish”

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

10/01/2012 15

10/1/2012

6

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
T(n) = 10 + T(n/2) T(1) = 13

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

T(n) = 10 + 10 + T(n/4)
= 10 + 10 + 10 + T(n/8)
= …
= 10k + T(n/(2k))

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n
– So T(n) = 10 log2 n + 13 (get to base case and do it)
– So T(n) is O(log n)

10/01/2012 16

