Asymptotic Analysis II

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2012

Today's Outline

- Announcements
 - Assignment #1, due Thurs, Oct 4 at 11pm
 - Assignment #2, posted later this week, due Fri Oct 12 at BEGINNING of lecture

• Algorithm Analysis

- Big-Oh
- Analyzing code

10/03/2012

Ignoring constant factors

- So binary search is $O(\log n)$ and linear search is O(n)
 - But which is faster?
- Could depend on constant factors:
 - How \emph{many} assignments, additions, etc. for each \emph{n}
 - E.g. T(n) = 5,000,000n
- vs. $T(n) = 5n^2$
 - And could depend on size of n (if n is small then constant additive factors could be more important)
 - E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n
- But there exists some n_0 such that for all $n > n_0$ binary search wins
- Let's play with a couple plots to get some intuition...

10/03/2012

Linear Search vs. Binary Search Let's try to "help" linear search: • Run it on a computer 100x as fast (say 2010 model vs. 1990)

- Use a new compiler/language that is 3x as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600x as fast as in binary search

Ası	vm	ptotic	nota	tion
, ,,	, , , ,	piono	11010	

About to show formal definition of Big-O, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- -4n+5
- $-0.5n \log n + 2n + 7$
- $-n^3+2^n+3n$
- $n \log (10n^2)$

10/03/2012

Examples

True or false?

- 1. 4+3n is O(n)
- 2. n+2logn is O(logn)
- 3. logn+2 is O(1)
- 4. n⁵⁰ is O(1.1ⁿ)

Examples

True or false?

1. 4+3n is O(n)
2. n+2logn is O(logn)
3. logn+2 is O(1)
4. n⁵⁰ is O(1.1ⁿ)
True

10/03/2012

3/2012

Big-Oh relates functions

We use O on a function f(n) (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

- $3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

 $- (3n^2+17)$ is $O(n^2)$

 $- \ (3n^2 {+} 17) \ \in \ O(n^2)$

 $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

10/03/2012

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that

 $g(n) \le c f(n)$

for all $n \ge n_0$

To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order

• Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$ c = 5 and $n_0 = 10$ is more than good enough

This is "less than or equal to"

- So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.

10/03/2012

Using the definition of Big	LOh (Evample 1)	
Given: $g(n) = 1000n$ & $f(n) = n^2$ Prove: $g(n)$ is in $O(f(n))$ • A valid proof is to find valid $c \& n_0$	Def'n: g(n) is in $O(f(n))$ iff there exist positive constants c and n_0 s.t. $g(n) \le cf(n)$ for all $n \ge n_0$	
 Try: n₀ =1000, c =1 Also: n₀ =1, c =1000 		
10/07/2011	10	
	21 (= 1 2)	
Using the definition of Big Given: $g(n) = 4n & f(n) = n^2$	Def'n: g(n) is in O(f(n)) iff there exist	
Prove: g(n) is in O(f(n)) • A valid proof is to find valid c & n ₀ • When n=4, g(n) =16 & f(n) =16; this is	positive constants c and n_0 s.t. $g(n) \le c f(n)$ for all $n \ge n_0$	
• So we can choose $\mathbf{n}_0 = 4$, and $\mathbf{c}_0 = 1$		
 Note: There are many possible choice ex: n₀ = 78, and c = 42 works fine 	s:	
10/03/2012	11	
		1
Using the definition of Big	ı-Oh (Example 3)	
Given: $g(n) = n^4 & f(n) = 2^n$, Prove: $g(n)$ is in $O(f(n))$	Def'n: $g(n)$ is in $O(f(n))$ iff there exist positive constants c and n_0 s.t.	
 A valid proof is to find valid c & n₀ One possible answer: n₀ = 20, and c 	$g(n) \le c f(n)$ for all $n \ge n_0$	
10/03/2012	12	

What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

```
g(n) = 7n+5
f(n) = n
```

- These have the same asymptotic behavior (linear), so g(n) is in O(f(n)) even though g(n) is always larger
- There is no positive n_0 such that $g(n) \le f(n)$ for all $n \ge n_0$
- The 'c' in the definition allows for that:
 - $g(n) \le c f(n)$ for all $n \ge n_0$
- To prove g(n) is in O(f(n)), have c = 12, $n_0 = 1$

10/03/2012

13

Big Oh: Common Categories

From fastest to slowest:

O(1) constant (same as O(k) for constant k) O(log n) logarithmic (log_kn, log n^2 is $O(\log n)$)

O(n) linear $O(n \log n)$ "n $\log n$ " $O(n^2)$ quadratic $O(n^3)$ cubic

 $O(n^k)$ cubic $O(n^k)$ polynomial (where is k is an constant) $O(k^n)$ exponential (where k is any constant > 1)

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to $k^{\rm n}$ for some k>1"

10/03/2012

14

More Definitions

- **Upper bound**: $O(\mathbf{f(n)})$ is the set of all functions asymptotically less than or equal to $\mathbf{f(n)}$
 - g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: $\Omega(\mathbf{f(n)})$ is the set of all functions asymptotically greater than or equal to $\mathbf{f(n)}$
 - g(n) is in $\Omega(f(n))$ if there exist positive constants c and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - g(n) is in $\theta(f(n))$ if <u>both</u>: g(n) is in O(f(n)) AND g(n) is in $\Omega(f(n))$

10/03/2012

Even More Definitions...

 $O(f(\mathbf{n}))$ is the set of all functions asymptotically less than or equal to $f(\mathbf{n})$

g(n) is in O(f(n)) if there exist positive constants c and n₀ such that
g(n) ≤ c f(n) for all n ≥ n₀

o(f(n)) is the set of all functions asymptotically less than f(n)

 ${\bf g}(n)$ is in ${\bf o}({\bf f(n)})$ if for any positive constant c, there exists a positive constant n_0 such that

g(n) < c f(n) for all $n \ge n_0$

 $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)

• g(n) is in $\Omega(\mathbf{f(n)})$ if there exist positive constants c and n_0 such that $g(n) \ge c \mathbf{f(n)}$ for all $n \ge n_0$

 $\omega(f(n))$ is the set of all functions asymptotically greater than f(n)

• g(n) is in $\omega(f(n))$ if for any positive constant c, there exists a positive constant n_0 such that

g(n) > c f(n) for all $n \ge n_0$

10/03/2012

10

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	≤
Ω	≥
Θ	=
0	<
ω	>

10/03/2012

17

Types of Analysis

Two orthogonal axes:

- bound flavor (usually we talk about upper or tight)
 - upper bound (O, o)
 - lower bound (Ω, ω)
 - asymptotically tight (Θ)
- analysis case (usually we talk about worst)
 - worst case (adversary)
 - average case
 - best case
 - "amortized"

10/03/2012

cse 373 11au - Asymptotic Analysis II

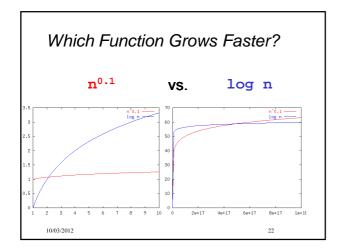
$$n^3 + 2n^2$$
 vs. $100n^2 + 1000$

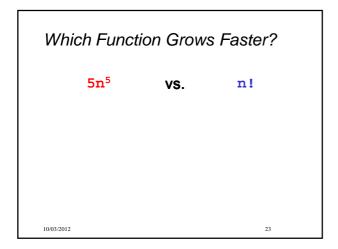
10/03/2012 cse 373 11au - Asymptotic Analysis II

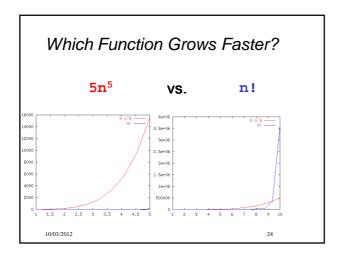
Which Function Grows Faster?

 $n^{0.1}$ vs. log n

10/03/2012







Nested Loops

```
for i = 1 to n do
  for j = 1 to n do
    sum = sum + 1

for i = 1 to n do
  for j = 1 to n do
    sum = sum + 1
```

10/03/2012

25

More Nested Loops

10/03/2012

26

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for <u>large n</u> and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the "cross-over" point is around 5 * 10¹⁷
 - $\bullet\,$ So if you have input size less than 258, prefer $n^{1/10}$
- Comparing O() for <u>small n</u> values can be misleading
 - Quicksort: O(nlogn) (expected)
 - Insertion Sort: O(n²) (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later

10/03/2012

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 Reason about performance as a function of n
 Be able to mathematically prove things about performance
- Be able to mathematically prove things about performance
 Yet, timing has its place

 In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 Ex: Benchmarking graphics cards
 We will do some timing in our homeworks

 Evaluating an algorithm? Use asymptotic analysis
 Evaluating an implementation of hardware/software? Timing can be useful

0/03/2012		2