Asymptotic Analysis II

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2012

Today's Outline

Announcements

- Assignment #1, due Thurs, Oct 4 at 11pm
- Assignment #2, posted later this week, due Fri Oct 12 at BEGINNING of lecture

Algorithm Analysis

- Big-Oh
- Analyzing code

10/03/2012 2

Ignoring constant factors

- So binary search is $O(\log n)$ and linear search is O(n)
 - But which is faster?
- Could depend on constant factors:
 - How many assignments, additions, etc. for each n
 - E.g. T(n) = 5,000,000n
- vs. $T(n) = 5n^2$
- And could depend on size of n (if n is small then constant additive factors could be more important)
 - E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n
- But there exists some n_0 such that for all $n > n_0$ binary search wins
- Let's play with a couple plots to get some intuition...

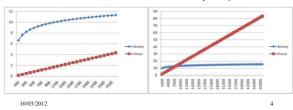
10/03/2012

Linear Search vs. Binary Search

Let's try to "help" linear search:

- Run it on a computer 100x as fast (say 2010 model vs. 1990)
- Use a new compiler/language that is 3x as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600x as fast as in binary search

For small n, linear search is faster! But eventually binary search wins.



Asymptotic notation

About to show formal definition of Big-O, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

- -4n+5
- $-0.5n \log n + 2n + 7$
- $-n^3+2^n+3n$
- $n \log (10n^2)$

Examples

True or false?

- 1. 4+3n is O(n)
- 2. n+2logn is O(logn)
- 3. logn+2 is O(1)
- 4. n^{50} is $O(1.1^n)$

10/03/2012 10/03/2012

Examples

True or false?

True 1. 4+3n is O(n) False 2. n+2logn is O(logn) 3. logn+2 is O(1) False 4. n⁵⁰ is O(1.1ⁿ) True

Big-Oh relates functions

We use O on a function f(n) (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

 $-3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $(3n^2+17) \text{ is } O(n^2)$ $(3n^2+17) \in O(n^2)$

 $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

10/03/2012 10/03/2012

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$

To show g(n) is in O(f(n)), pick a c large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms"

• Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$ c = 5 and $n_0 = 10$ is more than good enough

This is "less than or equal to"

- So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.

10/03/2012

Using the definition of Big-Oh (Example 1)

Given: $g(n) = 1000n & f(n) = n^2$ Prove: g(n) is in O(f(n))

- A valid proof is to find valid $\mathbf{c} \ \mathbf{k} \ \mathbf{n}_0$
- Try: **n**₀ =1000, **c** =1
- Also: **n**₀ =1, **c** =1000

Def'n: g(n) is in O(f(n)) iff there exist positive constants c and n_0 s.t. $g(n) \le c f(n)$ for all $n \ge n_0$

10/07/2011

Using the definition of Big-Oh (Example 2)

Given: $g(n) = 4n & f(n) = n^2$ Prove: g(n) is in O(f(n)) g(n) is in O(f(n)) iff there exist positive constants c and n_0 s.t. g(n) $\leq c$ f(n) for all $n \geq n_0$

A valid proof is to find valid c & n₀

- When n=4, g(n) =16 & f(n) =16; this is the crossing over point
- So we can choose $\mathbf{n_0} = 4$, and $\mathbf{c} = 1$
- Note: There are many possible choices: ex: n₀ = 78, and c = 42 works fine

Using the definition of Big-Oh (Example 3)

Given: $g(n) = n^4 \& f(n) = 2^n$, Prove: g(n) is in O(f(n))

• A valid proof is to find valid c & n₀

• One possible answer: $\mathbf{n_0} = 20$, and $\mathbf{c} = 1$

Def'n: g(n) is in O(f(n)) iff there exist positive constants c and n_0 s.t. $g(n) \le c f(n)$ for all $n \ge n_0$

10.03/2012 10.03/2012 12

What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

```
g(n) = 7n+5f(n) = n
```

- These have the same asymptotic behavior (linear),
- so g(n) is in O(f(n)) even though g(n) is always larger
 There is no positive n₀ such that g(n) ≤ f(n) for all n ≥ n₀
- The 'c' in the definition allows for that:
 - $g(n) \le c f(n)$ for all $n \ge n_0$
- To prove g(n) is in O(f(n)), have c = 12, $n_0 = 1$

Big Oh: Common Categories

From fastest to slowest:

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic (log_kn, log n^2 is $O(\log n)$)

O(n) linear $O(n \log n)$ "n log n" $O(n^2)$ quadratic $O(n^3)$ cubic

 $O(n^k)$ polynomial (where is k is an constant) $O(k^n)$ exponential (where k is any constant > 1)

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to kn for some k>1"

10/03/2012 13 10/03/2012 14

More Definitions

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist positive constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist positive constants c and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to f(n)
 - g(n) is in $\theta(f(n))$ if <u>both</u>: g(n) is in O(f(n)) AND g(n) is in $\Omega(f(n))$

10/03/2012

Even More Definitions...

O(f(n)) is the set of all functions asymptotically less than or equal to f(n)

 g(n) is in O(f(n)) if there exist positive constants c and n₀ such that g(n) ≤ c f(n) for all n ≥ n₀

o(f(n)) is the set of all functions asymptotically less than f(n)

 g(n) is in o(f(n)) if for any positive constant c, there exists a positive constant n₀ such that

g(n) < c f(n) for all $n \ge n_0$

 $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to f(n)

• g(n) is in $\Omega(f(n))$ if there exist positive constants c and n_0 such that

 $g(n) \ge c f(n)$ for all $n \ge n_0$

 $\omega(f(n))$ is the set of all functions asymptotically greater than f(n)

 g(n) is in ω(f(n)) if for any positive constant c, there exists a positive constant n₀ such that

g(n) > c f(n) for all $n \ge n_0$

10/03/2012

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	≤
Ω	≥
Θ	=
0	<
ω	>

10/03/2012

Types of Analysis

Two orthogonal axes:

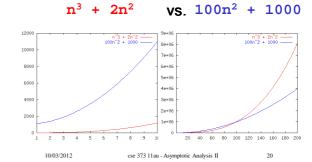
- bound flavor (usually we talk about upper or tight)
 - upper bound (O, o)
 - lower bound (Ω, ω)
 - asymptotically tight (Θ)
- analysis case (usually we talk about worst)
 - worst case (adversary)
 - average case
 - best case
 - "amortized"

10/03/2012 cse 373 11au - Asymptotic Analysis II 18

Which Function Grows Faster?

 $n^3 + 2n^2$ vs. $100n^2 + 1000$

Which Function Grows Faster?

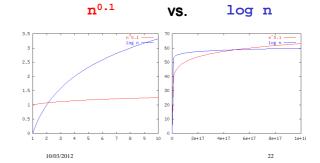


10/03/2012 cse 373 11au - Asymptotic Analysis II 1

Which Function Grows Faster?

Which Function Grows Faster?

 $n^{0.1}$ vs. log n

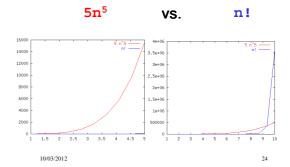


10/03/2012 21

Which Function Grows Faster?

Which Function Grows Faster?

 $5n^5$ vs. n!



10/03/2012

Nested Loops

```
for i = 1 to n do
  for j = 1 to n do
    sum = sum + 1
for i = 1 to n do
 for j = 1 to n do
   sum = sum + 1
```

More Nested Loops

```
for i = 1 to n do
 for j = 1 to n do
   if (cond) {
           do_stuff(sum)
     } else {
          for k = 1 to n*n
                 sum += 1
```

10/03/2012 10/03/2012

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for large n and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically n^{1/10} grows more quickly
 - $\bullet\,$ But the "cross-over" point is around 5 * 10 17
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- Comparing O() for <u>small n</u> values can be misleading
 - Quicksort: O(nlogn) (expected)
 - Insertion Sort: O(n²) (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later

10/03/2012

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- · Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data
 - Ex: Benchmarking graphics cards
- We will do some timing in our homeworks
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

10/03/2012 28