
10/1/2012

1

Asymptotic Analysis II

CSE 373
Data Structures & Algorithms

Ruth Anderson
Autumn 2012

10/03/2012

Today’s Outline

• Announcements
– Assignment #1, due Thurs, Oct 4 at 11pm
– Assignment #2, posted later this week, due Fri Oct 12 at

BEGINNING of lecture

• Algorithm Analysis
– Big-Oh
– Analyzing code

2

Ignoring constant factors

• So binary search is O(log n) and linear search is O(n)

– But which is faster?

• Could depend on constant factors:
– How many assignments, additions, etc. for each n

• E.g. T(n) = 5,000,000n vs. T(n) = 5n2

– And could depend on size of n (if n is small then constant
additive factors could be more important)

• E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

• But there exists some n0 such that for all n > n0 binary search wins
• Let’s play with a couple plots to get some intuition…

10/03/2012 3

Linear Search vs. Binary Search
Let’s try to “help” linear search:
• Run it on a computer 100x as fast (say 2010 model vs. 1990)
• Use a new compiler/language that is 3x as fast

• Be a clever programmer to eliminate half the work
• So doing each iteration is 600x as fast as in binary search

For small n, linear search is faster! But eventually binary search wins.

10/03/2012 4

Asymptotic notation

About to show formal definition of Big-O, which amounts to saying:
1. Eliminate low-order terms
2. Eliminate coefficients

Examples:

– 4n + 5
– 0.5n log n + 2n + 7

– n3 + 2n + 3n
– n log (10n2)

10/03/2012 5

Examples

6

True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)
3. logn+2 is O(1)

4. n50 is O(1.1n)

10/03/2012

10/1/2012

2

Examples

7

True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)
3. logn+2 is O(1)

4. n50 is O(1.1n)

True
False
False
True

10/03/2012

Big-Oh relates functions

We use O on a function f(n) (for example n2) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)
– 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

– (3n2+17) is O(n2)
– (3n2+17) ∈ O(n2)
– (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

10/03/2012 8

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist
positive constants c and n0 such that

g(n) ≤≤≤≤ c f(n) for all n ≥≥≥≥ n0

To show g(n) is in O(f(n)), pick a c large enough to “cover the
constant factors” and n0 large enough to “cover the lower-order
terms”

• Example: Let g(n) = 3n2+17 and f(n) = n2

c = 5 and n0 = 10 is more than good enough

This is “less than or equal to”

– So 3n2+17 is also O(n5) and O(2n) etc.

10/03/2012 9

Using the definition of Big-Oh (Example 1)

Given: g(n) = 1000n & f(n) = n2

Prove: g(n) is in O(f(n))
• A valid proof is to find valid c & n0

• Try: n0 =1000, c =1
• Also: n0 =1, c =1000

Def’n:
g(n) is in O(f(n)) iff there exist
positive constants c and n0 s.t.
g(n) ≤≤≤≤ c f(n) for all n ≥≥≥≥ n0

10/07/2011
10

Using the definition of Big-Oh (Example 2)

11

Given: g(n) = 4n & f(n) = n2

Prove: g(n) is in O(f(n))
• A valid proof is to find valid c & n0

• When n=4, g(n) =16 & f(n) =16; this is the crossing over point
• So we can choose n0 = 4, and c = 1

• Note: There are many possible choices:
ex: n0 = 78, and c = 42 works fine

10/03/2012

Def’n:
g(n) is in O(f(n)) iff there exist
positive constants c and n0 s.t.
g(n) ≤≤≤≤ c f(n) for all n ≥≥≥≥ n0

Using the definition of Big-Oh (Example 3)

12

Given: g(n) = n4 & f(n) = 2n,
Prove: g(n) is in O(f(n))
• A valid proof is to find valid c & n0

• One possible answer: n0 = 20, and c = 1

10/03/2012

Def’n:
g(n) is in O(f(n)) iff there exist
positive constants c and n0 s.t.
g(n) ≤≤≤≤ c f(n) for all n ≥≥≥≥ n0

10/1/2012

3

What’s with the c?

13

• To capture this notion of similar asymptotic behavior, we allow a
constant multiplier (called c)

• Consider:
g(n) = 7n+5
f(n) = n

• These have the same asymptotic behavior (linear),
so g(n) is in O(f(n)) even though g(n) is always larger

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0

• The ‘c’ in the definition allows for that:
g(n) ≤≤≤≤ c f(n) for all n ≥≥≥≥ n0

• To prove g(n) is in O(f(n)), have c = 12, n0 = 1

10/03/2012

Big Oh: Common Categories

14

From fastest to slowest:
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic (logkn, log n2 is O(log n))

O(n) linear
O(n log n) “n log n”

O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is an constant)

O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it
means “grows at rate proportional to kn for some k>1”

10/03/2012

More Definitions

• Upper bound: O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)
– g(n) is in O(f(n)) if there exist positive constants c and n0 such that

g(n) ≤≤≤≤ c f(n) for all n ≥≥≥≥ n0

• Lower bound: Ω(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
– g(n) is in Ω(f(n)) if there exist positive constants c and n0 such that

g(n) ≥≥≥≥ c f(n) for all n ≥≥≥≥ n0

• Tight bound: θ(f(n)) is the set of all functions asymptotically
equal to f(n)
– g(n) is in θ(f(n)) if both: g(n) is in O(f(n)) AND

g(n) is in Ω(f(n))

10/03/2012 15

Even More Definitions…
O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
• g(n) is in O(f(n)) if there exist positive constants c and n0 such that

g(n) ≤≤≤≤ c f(n) for all n ≥≥≥≥ n0

o(f(n)) is the set of all functions asymptotically less than f(n)
• g(n) is in o(f(n)) if for any positive constant c, there exists a positive

constant n0 such that
g(n) < c f(n) for all n ≥ n0

Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
• g(n) is in Ω(f(n)) if there exist positive constants c and n0 such that

g(n) ≥≥≥≥ c f(n) for all n ≥≥≥≥ n0

ω(f(n)) is the set of all functions asymptotically greater than f(n)
• g(n) is in ω(f(n)) if for any positive constant c, there exists a positive

constant n0 such that
g(n) > c f(n) for all n ≥ n0

10/03/2012 16

10/03/2012 17

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics Relation

O ≤
Ω ≥

Θ =

o <

ω >

10/03/2012

Types of Analysis

Two orthogonal axes:

– bound flavor (usually we talk about upper or tight)

• upper bound (O, o)
• lower bound (Ω, ω)

• asymptotically tight (Θ)

– analysis case (usually we talk about worst)

• worst case (adversary)
• average case

• best case
• “amortized”

18cse 373 11au - Asymptotic Analysis II

10/1/2012

4

10/03/2012

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.vs.vs.vs.

19cse 373 11au - Asymptotic Analysis II 10/03/2012

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.vs.vs.vs.

20cse 373 11au - Asymptotic Analysis II

10/03/2012

Which Function Grows Faster?

n0.1 log nvs.vs.vs.vs.

21 10/03/2012

Which Function Grows Faster?

n0.1 log nvs.vs.vs.vs.

22

10/03/2012

Which Function Grows Faster?

5n5 n!vs.vs.vs.vs.

23 10/03/2012

Which Function Grows Faster?

5n5 n!vs.vs.vs.vs.

24

10/1/2012

5

10/03/2012

Nested Loops

for i = 1 to n do

for j = 1 to n do

sum = sum + 1

for i = 1 to n do

for j = 1 to n do

sum = sum + 1

25 10/03/2012

More Nested Loops

for i = 1 to n do

for j = 1 to n do

if (cond) {

do_stuff(sum)

} else {

for k = 1 to n*n

sum += 1

26

Big-Oh Caveats

• Asymptotic complexity (Big-Oh) focuses on behavior for large n
and is independent of any computer / coding trick

– But you can “abuse” it to be misled about trade-offs
– Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly

• But the “cross-over” point is around 5 * 1017

• So if you have input size less than 258, prefer n1/10

• Comparing O() for small n values can be misleading
– Quicksort: O(nlogn) (expected)
– Insertion Sort: O(n2) (expected)

– Yet in reality Insertion Sort is faster for small n’s
– We’ll learn about these sorts later

10/03/2012 27

Addendum: Timing vs. Big-Oh?

28

• At the core of CS is a backbone of theory & mathematics
– Examine the algorithm itself, mathematically, not the

implementation
– Reason about performance as a function of n
– Be able to mathematically prove things about performance

• Yet, timing has its place
– In the real world, we do want to know whether

implementation A runs faster than implementation B on data
set C

– Ex: Benchmarking graphics cards
– We will do some timing in our homeworks

• Evaluating an algorithm? Use asymptotic analysis
• Evaluating an implementation of hardware/software? Timing

can be useful

10/03/2012

