Binary Search Trees

CSE 373
Data Structures & Algorithms
Ruth Anderson
Autumn 2012

10/05/2012

cse 373 12au - Binary Search Trees

Today's Outline

- Announcements
 - Assignment #2 due Fri, Oct 12 at the BEGINNING of lecture
- Today's Topics:
 - Asymptotic Analysis
 - Binary Search Trees

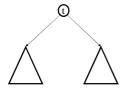
10/05/2012

cse 373 12au - Binary Search Trees

Tree Calculations

Recall: height is max number of edges from root to a leaf

Find the height of the tree...



runtime:

10/05/2012

More Recursive Tree Calculations: Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

Three types:

• Pre-order: Root, left subtree, right subtree

• <u>In-order</u>: Left subtree, root, right subtree

• <u>Post-order</u>: Left subtree, right subtree, root

10/05/2012

cse 373 12au - Binary Search Trees

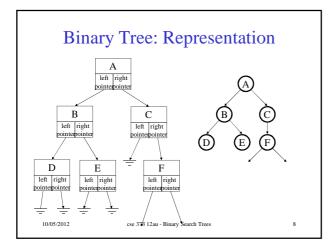
(an expression tree)

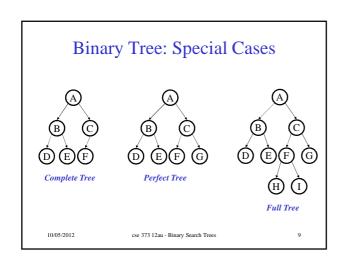
Traversals

```
void traverse(BNode t){
  if (t != NULL)
    traverse (t.left);
  print t.element;
  traverse (t.right);
  }
}
Which one is this?
```

10/05/2012

Binary Trees • Binary tree is - a root - left subtree (maybe empty) - right subtree (maybe empty) • Representation: Data left right pointer pointer Data left right pointer





ADTs Seen So Far

- Stack
 - Push
 - Pop
- Queue
 - Enqueue
 - Dequeue

10/05/2012

cse 373 12au - Binary Search Trees

The Dictionary ADT

- Data:
 - (key, value) pairs

insert(tanvir,)

find(swansond)

- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

• swansond David Swanson

The Dictionary ADT is sometimes called the "Map ADT"

10/05/2012

cse 373 12au - Binary Search Trees

tanvir Tanvir Aumi OH: T & Th 10-11am, CSE 216

10

jjgile Jacob Gile

OH: F 1:30am-2:30pm CSE 220

swansond

David Swanson OH: Th 3:30-4:30pm CSE 218

zzt0215 Zhiting Zhu OH: W 10-11am

CSE 218

11

12

A Modest Few Uses

: phone directories or other • Search

large data sets (genome maps, web pages)

: Router tables

 Networks · Operating systems : Page tables • Compilers : Symbol tables

Probably the most widely used ADT!

10/05/2012 cse 373 12au - Binary Search Trees

4

Implementations

insert delete

- · Unsorted Linked-list
- · Unsorted array
- · Sorted array

10/05/2012

cse 373 12au - Binary Search Trees

Implementations

For dictionary with n key/value pairs

· Unsorted linked-list

· Sorted linked list

insert	find	delete
O(1) *	O(n)	O(n)

O(n)

O(n)

13

- 0(1) * · Unsorted array O(n)O(n)

O(n)

· Sorted array O(n) $O(\log n)$ O(n)

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

*Note: If we do not allow duplicates values to be inserted, we would need to do O(n) work (a find operation) to check for a key's existence before insertion

10/05/2012

cse 373 12au - Binary Search Trees

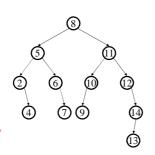
Binary Search Tree Data Structure

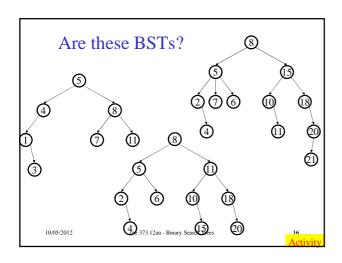
- Structural property

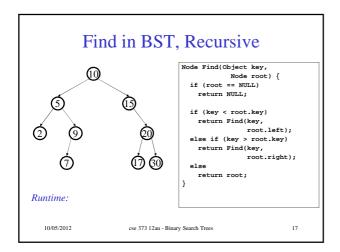
 each node has ≤ 2 children
 - result:

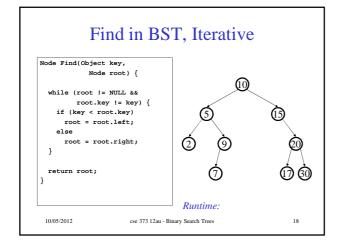
 - storage is small
 operations are simple
 average depth is small
- Order property
 all keys in left subtree smaller than root's key
 all keys in right subtree larger than root's key
 - result: easy to find any given key
- What must I know about what I store?

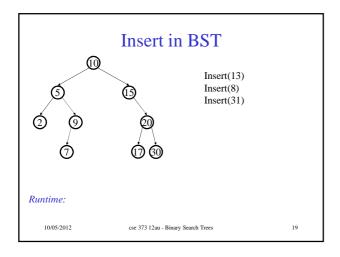
10/05/2012











BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

Runtime depends on the order!

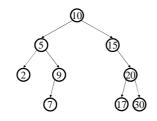
- in given order
- in reverse order
- median first, then left median, right median, etc.

10/05/2012

cse 373 12au - Binary Search Trees

Bonus: FindMin/FindMax

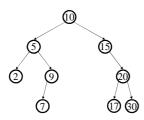
- Find minimum
- Find maximum



20

10/05/2012

Deletion in BST



Why might deletion be harder than insertion?

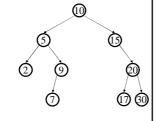
10/05/2012

cse 373 12au - Binary Search Trees

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

- + simpler
- + physical deletions done in batches
- + some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)



22

10/05/2012

cse 373 12au - Binary Search Trees

Non-lazy Deletion

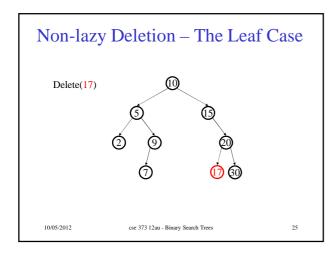
- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed.

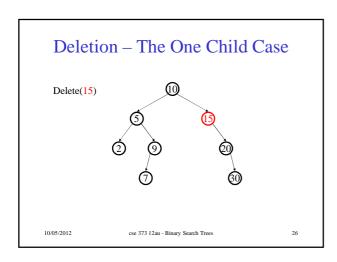
 Then "fix" the tree so that it is still a binary search tree.
- Three cases:
 - node has no children (leaf node)
 - node has one child
 - node has two children

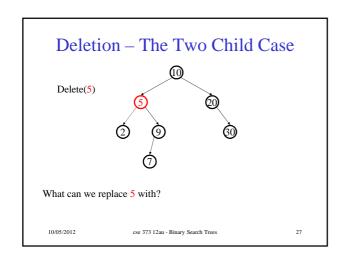
10/05/2012

cse 373 12au - Binary Search Trees

24







Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:

succ from right subtree: findMin(t.right) pred from left subtree : findMax(t.left)

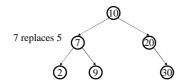
Now delete the original node containing succ or pred

• Leaf or one child case - easy!

10/05/2012

cse 373 12au - Binary Search Trees

Finally...



Original node containing 7 gets deleted

10/05/2012

cse 373 12au - Binary Search Trees

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count # of edges)

For binary tree of height *h*:

- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

10/05/2012

cse 373 12au - Binary Search Trees

30

Balanced BST	
 Observation BST: the shallower the better! For a BST with n nodes Average height is Θ(log n) Worst case height is Θ(n) Simple cases such as insert(1, 2, 3,, n) 	
lead to the worst case scenario	
Solution: Require a Balance Condition that 1. ensures depth is $\Theta(\log n)$ – strong enough! 2. is easy to maintain – not too strong!	
10.05/2012 cse 373 12au - Binary Search Trees 31	
	-
Potential Balance Conditions	
Left and right subtrees of the root	
have equal number of nodes	
2. Left and right subtrees of the root	
have equal <i>height</i>	
10.05/2012 cse 373 12au - Binary Search Trees 32	
	_
Potential Balance Conditions	
3. Left and right subtrees of <i>every node</i>	
have equal number of nodes	
4. Left and right subtrees of <i>every node</i>	
have equal height	

10/05/2012