Today's Outline

- Assignment \#2 due Fri, Oct 12 at the BEGINNING of

Data Structures \& Algorithms
Ruth Anderson
Autumn 2012

Binary Search Trees

CSE 373

- Announcements
 Announcements

 lecture- Today's Topics:
- Asymptotic Analysis
- Binary Search Trees

Tree Calculations

runtime:

10/05/2012
What is the height of this tree?

More Recursive Tree Calculations:
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:

- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root

10/05/2012
cse 373 12au - Binary Search Trees

(an expression tree)

Traversals

```
void traverse(BNode t) {
        if (t != NULL)
        traverse (t.left);
        print t.element;
        traverse (t.right);
    }
}
Which one is this?
```


Binary Trees

- Binary tree is
- a root
- left subtree (maybe empty)
- right subtree (maybe empty)
- Representation

Data		
left pointer	right pointer	

10/05/2012
se 373 12au - Binary Search Tre

7

Binary Tree: Representation

(H)
Full Tree

- Stack
- Push
- Pop
- Queue
- Enqueue
- Dequeue

A Modest Few Uses

Implementations

insert find delete

- Unsorted Linked-list
- Unsorted array
- Sorted array

Implementations

For dictionary with n key/value pairs

- Unsorted linked-list $\quad O(1)^{*} \quad O(n) \quad O(n)$
- Unsorted array $O(1) * \quad O(n) \quad O(n)$
- Sorted linked list $\quad O(n) \quad O(n) \quad O(n)$
- Sorted array $O(n) \quad O(\log n) \quad O(n)$

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced
*Note: If we do not allow duplicates values to be inserted, we would need to do $O(n)$ work (a find operation) to check for a key's existence before insertion

Binary Search Tree Data Structure

- Structural property
- each node has ≤ 2 children
- result:
- storage is small
- operations are simple
- average depth is small
- Order property
all keys in left subtree smaller than root's key
- all keys in right subtree larger than root's key
- result: easy to find any given key

What must I know about what I store?
(4)

Find in BST, Recursive

Find in BST, Iterative

Insert in BST

BuildTree for BST

- Suppose keys $1,2,3,4,5,6,7,8,9$ are inserted into an initially empty BST.

Runtime depends on the order!

- in given order
- in reverse order
- median first, then left median, right median, etc.

Runtime:

Bonus: FindMin/FindMax

- Find minimum
- Find maximum

Deletion in BST

Why might deletion be harder than insertion?

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max)

Non-lazy Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed.

Then "fix" the tree so that it is still a binary search tree.

- Three cases:
- node has no children (leaf node)
- node has one child
- node has two children

Non-lazy Deletion - The Leaf Case

Delete(17)

10/05/2012

Deletion - The One Child Case

Delete(15)

10/05/2012

Deletion - The Two Child Case

Delete(5)

[^0]
Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be

 between the two child subtrees!Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

- Leaf or one child case - easy!

Finally...

Original node containing 7 gets deleted

10/05/2012

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes
- Average height is $\Theta(\log n)$
- Worst case height is $\Theta(n)$
- Simple cases such as insert ($1,2,3, \ldots, \mathrm{n})$ lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $\Theta(\log n) \quad$-strong enough!
2. is easy to maintain - not too strong!

Binary Tree: Some Numbers
Recall: height of a tree = longest path from root to leaf (count \# of edges)

For binary tree of height h :

- max \# of leaves:
- max \# of nodes:
- min \# of leaves:
- min \# of nodes:

10055/2012

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
4. Left and right subtrees of every node have equal height

[^0]: What can we replace 5 with?

