AVL Trees

(4.4 in Weiss)

CSE 373
Data Structures \& Algorithms
Ruth Anderson
Autumn 2012

Today's Outline

- Announcements
- Assignment \#2 due Fri, Oct 12 at the BEGINNING of lecture
- Midterm \#1, Fri, Oct 19, 2012.
- Today's Topics:
- Binary Search Trees (Weiss 4.1-4.3)
- AVL Trees (Weiss 4.4)

The AVL Balance Condition

The AVL Tree Data Structure
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance $(x)=\operatorname{height}(x$. left $)-\operatorname{height}(x$. right $)$
AVL property: $\mathbf{- 1} \leq$ balance $(x) \leq 1$, for every node x

- Ensures small depth

Will prove this by showing that an AVL tree of height
h must have a lot of (i.e. $\Theta\left(2^{h}\right)$) nodes

- Easy to maintain
- Using single and double rotations

10/08/2012

Is this an AVL Tree?

NULLs have
height -1
10/08/2012 5

Proving Shallowness Bound

Let $\mathbf{S}(h)$ be the min \# of nodes in an AVL tree of height h

Claim: $\mathbf{S}(h)=\mathbf{S}(h-1)+\mathbf{S}(h-2)+1$
Solution of recurrence: $\mathbf{S}(h)=\Theta\left(2^{h}\right)$ (like Fibonacci numbers)

10/08/2012

AVL trees: find, insert

- AVL find:

- same as BST find.
- AVL insert
- same as BST insert, except may need to "fix" the AVL tree after inserting new value.

AVL tree insert

Let x be the node where an imbalance occurs.
Four cases to consider. The insertion is in the

1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases $1 \& 4$ are solved by a single rotation.
Cases $2 \& 3$ are solved by a double rotation.

Bad Case \#1

Insert(6)
Insert(3)
Insert(1)
2. For each node on the path from the inserted node up to the root, the

So after recursive insertion in a subtree, check for height imbalance at each of these nodes and perform a rotation to restore balance at that node if needed

All the action is in defining the correct rotations to restore balance
Fact that makes it a bit easier
There must be a deepest node that is imbalanced after the insert (all descendants still balanced)

- After rebalancing this deepest node, every node is balanced

So at most one node needs to be rebalanced

Bad Case \#1: Example

Generalized left-left case $\begin{aligned} & \text { Oval: a node in the } \\ & \text { Triangle: a subtree }\end{aligned}$

Node a imbalanced due to insertion somewhere in

Generalized left-left case (cont.)

- So we rotate at \boldsymbol{a}, using BST facts: $\mathrm{X}<\mathrm{b}<\mathrm{Y}<\mathrm{a}<\mathrm{Z}$
left-left grandchild increasing height of left subtree.
- 1 of 4 possible imbalance causes (other three coming)

First we did the insertion, which makes a imbalanced:

Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
- Move child of unbalanced node into parent position
- Parent becomes the "other" child (always okay in a BST!)
- Other subtrees move in only way BST allows (next slide)

Abstract

AVL Property violated at this node (" x ")

- A single rotation to the right restores balance at the node
- To same height as before insertion (so ancestors now balanced)

Single rotation example: insert (1)

The general right-right case

- Mirror image to left-left case, so you rotate the other way
- Single rotation to the left
- Exact same concept, but slightly different code

Bad Case \#3

Insert(1)
Insert(6)
Insert(3)

Bad Case \#3: Wrong Solution \#1

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

- First wrong idea: single rotation like we did for left-left

Bad Case \#3: Wrong Solution \#2

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

- Second wrong idea: single rotation on the child of the unbalanced node
(1) ${ }^{2}$
(1) Doesn't work!!!

008/2012

Bad Case \#3: Correct Solution: Double Rotation
AVL Property violated at this node (" x ")

The general right-left case (cont.)

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

After insertion - unbalanced! \quad After entire double rotation - balanced!

(his

Easier to remember than you may think:
Move c to grandparent's position and then put $\mathrm{a}, \mathrm{b}, \mathrm{X}$,
10/08/2012 U, V, and Z in the right places to get a legal BST

Double rotation: insert (5), step 1
(1)

The last case: left-right

- Mirror image of right-left - double rotation - Again, no new concepts, only new code to write

Imbalance at node X

Single Rotation

1. Rotate between x and child

Double Rotation

1. Rotate between x 's child and grandchild
2. Rotate between x and x 's new child

Insert into an AVL tree: a bec d

Single and Double Rotations:

Inserting what integer values
would cause the tree to need a:

1. single rotation?
2. double rotation?

Insert(3)

Unbalanced?

Insert 3

3. no rotation?

Student Activity

Insert 33

Insert(33)

Unbalanced?
How to fix?

Insert 33: Single Rotation

36

Insert 18: Double Rotation (Step \#2)

AVL Trees Revisited

- Balance condition:

For every node $x, \quad-1 \leq$ balance $(x) \leq 1$

- Strong enough : Worst case depth is $\mathrm{O}(\log n)$
- Easy to maintain : one single or double rotation
- Guaranteed $\mathrm{O}(\log n)$ running time for
- Find?
- Insert?
- Delete?
- buildTree?

AVL Trees Revisited

- What extra info did we maintain in each node?
- Where were rotations performed?
- How did we locate this node?

