Hashing

Chapter 5 in Weiss

CSE 373
Data Structures and Algorithms
Ruth Anderson

Today's Outline

\qquad

- Announcements
- Homework \#4 coming soon:
- Java programming: disjoint sets and mazes
- due Thurs, Nov $8^{\text {th }}$ \qquad
- partners allowed- MUST declare by 11pm Wed Oct $3^{\text {st }} \underline{a t}$ the latest (email to Tanvir)
- Midterm \#2 - Fri, Nov 16 \qquad
- Today's Topics:
- Hashing \qquad
\qquad
10/26/2012

The Dictionary ADT
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10/26/2012 \qquad

Dictionary Implementations

For dictionary with n key/value pairs
insert find delete

- Unsorted array
$O(1)$ * $O(n) \quad O(n)$
$O(1) * \quad O(n) \quad O(n)$
- Sorted linked list $\quad O(n) \quad O(n) \quad O(n)$
- Sorted array $O(n) \quad O(\log n) \quad O(n)$
- BST \qquad
- AVL Tree
\qquad
\qquad
0/26/2012 $*_{\text {Note: }}$ If we do not allow duplicates values to be inserted, we would need to do 4 $\mathrm{O}(\mathrm{n})$ work (a find operation) to check for a key's existence before insertion

Hash Tables

- Constant time accesses!
- A hash table is an array of some fixed size, usually a prime number.
- General idea: hash table
\qquad
\qquad
\qquad

key space (e.g., integers, strings)
TableSize -
10/26/2012

Hash Tables

\qquad
Key space of size M, but we only want to store subset of size N , where $\mathrm{N} \ll \mathrm{M}$.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.

Example		
	0	
- key space = integers	1	
- TableSize $=10$	2	
	3	
- $\mathbf{h}(\mathrm{K})=\mathrm{K} \bmod 10$	4	
	5	
- Insert: 7, 18, 41, 94	6	
	7	
	8	
	9	
102662012		7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10/26/2012
7

Another Example

\qquad

- key space $=$ integers
- TableSize $=6$
- $\mathbf{h}(\mathrm{K})=\mathrm{K} \bmod 6$
- Insert: 7, 18, 41, 34 \square
\qquad
\qquad
\qquad
\qquad
\qquad Student Activity $\quad 8$ \qquad

Hash Functions
\qquad

1. simple/fast to compute, \qquad
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:
\qquad
\qquad
\qquad
\qquad

Sample Hash Functions:

\qquad

- key space $=$ strings
- $\mathrm{s}=\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{k}-1}$ \qquad

1. $\mathrm{h}(\mathrm{s})=\mathrm{s}_{0} \bmod$ TableSize \qquad
2. $\mathrm{h}(\mathrm{s})=\left(\sum_{i=0}^{k-1} s_{i}\right) \quad \bmod$ TableSize \qquad
3. $\mathrm{h}(\mathrm{s})=\left(\sum_{i=0}^{k-1} s_{i} \cdot 37^{i}\right) \bmod$ TableSize

Designing a Hash Function for web URLs \qquad
$\mathrm{s}=\mathrm{s}_{0} \mathrm{~s}_{1} \mathrm{~s}_{2} \ldots \mathrm{~s}_{\mathrm{k}-1}$
Issues to take into account:
\qquad
\qquad
$h(s)=$ \qquad
\qquad

Student Activity

Collision Resolution

\qquad
Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:
\qquad
\qquad

1. Separate Chaining
2. Open Addressing (linear probing, quadratic probing, double hashing)

Separate Chaining		
0		Insert: 10
1		22
2		107
3		12
4	- Separate chaining:	
5		
6	the sam	value
7	are k	
8	("buck	
9		
${ }_{102662012}$		${ }^{13}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analysis of find

- The load factor, λ, of a hash table is the ratio:
$\mathrm{N} \quad \leftarrow$ no. of elements \qquad
$\mathrm{M} \quad \leftarrow$ table size
For separate chaining, $\lambda=$ average $\#$ of elements in a \qquad bucket
- unsuccessful:
- successful:

10/26/2012

How big should the hash table be? \qquad

- For Separate Chaining: \qquad
\qquad
\qquad
\qquad
\qquad

tableSize: Why Prime?

\qquad

- Suppose
- data stored in hash table: $7160,493,60,55,321,900,810$ \qquad
- tableSize $=10$
data hashes to $0,3, \underline{0}, 5,1, \underline{0}, \underline{0}$
Real-life data tends to have a pattern

Being a multiple of 11 is usually not the pattern ©
data hashes to $10,9,5,0,2, \underline{9}, 7$

10/26/2012
16
Open Addressing

	Insert:	
0		
1		
2	10910	
3		
4	- $\frac{\text { Linear Probing: after }}{\text { checking spot } \mathrm{h}(\mathrm{k})}$	
5		
6		
7	is full, try $\mathrm{h}(\mathrm{k})+2$, then $\mathrm{h}(\mathrm{k})+3$, etc.	
8		
9		17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear Probing

$$
f(i)=i
$$

- Probe sequence:
$0^{\text {th }}$ probe $=\mathrm{h}(\mathrm{k}) \bmod$ TableSize
$1^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+1)$ mod TableSize
$2^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+2)$ mod TableSize
$\mathrm{i}^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+\mathrm{i})$ mod TableSize \qquad
\qquad

Linear Probing - Clustering

\qquad
\qquad
ocollision $\xrightarrow{\text { Lut }}$
$\xrightarrow{\text { L collision }}$ collision in small cluster
\qquad
no collision collision in small cluster
\qquad
Unern
Lu vir wiv
collision in large cluster \qquad

[R. Sedgewick]
10/26/2012

Load Factor in Linear Probing

\qquad

- For any $\lambda<1$, linear probing will find an empty slot
- Expected \# of probes (for large table sizes)
- successful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)
$$

unsuccessful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda>1 / 2$

Quadratic Probing

$$
f(i)=i^{2}
$$

Less likely to encounter Primary Clustering
\qquad
\qquad

- Probe sequence:
$0^{\text {th }}$ probe $=\mathrm{h}(\mathrm{k}) \bmod$ TableSize
$1^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+1)$ mod TableSize
$2^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+4)$ mod TableSize
$3^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+9)$ mod TableSize
$\mathrm{i}^{\text {th }}$ probe $=\left(\mathrm{h}(\mathrm{k})+\mathrm{i}^{2}\right)$ mod TableSize

Quadratic Probing

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10/26/2012

Quadratic Probing:

- $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 7$
- Perform these inserts:
- Insert(65)
- Insert(10)
- Insert(47)

0	
1	
2	93
3	
4	
5	40
6	76

Quadratic Probing Example

insert(76)	insert(40)	insert(48)	insert(5)	insert(55)
$76 \% 7=6$	$40 \% 7=5$	$48 \% 7=6$	$5 \% 7=5$	$55 \% 7=6$
0			But... insert(47)	
1				
2				
3				
4				
5				
${ }^{6} 76$				
10/26/2012				25

Quadratic Probing:
 Success guarantee for $\lambda<1 / 2$

- If size is prime and $\lambda<1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer.
- show for all $0 \leq i, j \leq \operatorname{size} / 2$ and $i \neq j$
$\left(h(x)+i^{2}\right)$ mod size $\neq\left(h(x)+j^{2}\right)$ mod size
- by contradiction: suppose that for some $\mathrm{i} \neq \mathrm{j}$:
$\left(\mathrm{h}(\mathrm{x})+\mathrm{i}^{2}\right) \bmod$ size $=\left(\mathrm{h}(\mathrm{x})+\mathrm{j}^{2}\right) \bmod$ size
$\Rightarrow \mathrm{i}^{2} \bmod$ size $=\mathrm{j}^{2} \bmod$ size
$\Rightarrow\left(\mathbf{i}^{2}-\mathrm{j}^{2}\right)$ mod size $=0$
$\Rightarrow[(i+j)(i-j)] \bmod$ size $=0$
BUT size does not divide $(i-j)$ or $(i+j)$

Quadratic Probing: Properties

- For any $\lambda<1 / 2$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad
- But what about keys that hash to the same spot?
- Secondary Clustering! \qquad
\qquad

Double Hashing

\qquad
$\mathrm{f}(\mathrm{i})=\mathrm{i} * \mathrm{~g}(\mathrm{k})$
where g is a second hash function

- Probe sequence:
\qquad
$0^{\text {th }}$ probe $=\mathrm{h}(\mathrm{k}) \bmod$ TableSize
$1^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+\mathrm{g}(\mathrm{k}))$ mod TableSize
$2^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+2 * \mathrm{~g}(\mathrm{k})) \bmod$ TableSize
$3^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+3 * \mathrm{~g}(\mathrm{k}))$ mod TableSize
$\mathrm{i}^{\text {th }}$ probe $=\left(\mathrm{h}(\underline{\mathrm{k}})+\mathrm{i}^{*} \mathrm{~g}(\mathrm{k})\right)$ mod TableSize

10/26/2012
28

Double Hashing Example

\qquad
$\mathrm{i}^{\text {th }}$ probe $=\left(\mathrm{h}(\underline{\mathrm{k}})+\mathrm{i}^{*} \mathrm{~g}(\underline{\mathrm{k}})\right)$ mod TableSize
$\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 7$ and $\mathrm{g}(\mathrm{k})=5-(\mathrm{k} \bmod 5)$

76		93		40		47		10		55
0	0		0		0		0		0	
1	1		1		1	47	1	47	1	47
2	2	93	2	93	2	93	2	93	2	93
3	3		3		3		3	10	3	10
4	4		4		4		4		4	55
5	5		5	40	5	40	5	40	5	40
676	6	76	6	76	6	76	6	76	6	76
Probes 1		1		1		2		1		2

Resolving Collisions with Double Hashing \qquad

0	Hash Functions:$\mathrm{H}(\mathrm{k})=\mathrm{k} \bmod \mathrm{M}$$\mathrm{H}_{2}(\mathrm{k})=1+((\mathrm{k} / \mathrm{M}) \bmod (\mathrm{M}-1))$$\mathrm{M}=$
2	
3	
4	Insert these values into the hash table
5	
6	with double hashing:
7	13
8	28
	33
9	147
	43

\qquad
\qquad
\qquad
\qquad
14

10/26/2012
30
\qquad
\qquad

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2 x as large) and hash all the items from the original table into the new table.

- When to rehash?
- half full ($\lambda=0.5$)
- when an insertion fails \qquad
- some other threshold
- Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.

0/26/2012

