Today's Outline

• Announcements

- Homework #4 coming soon:
 - Java programming: disjoint sets and mazes
 - · due Thurs, Nov 8th
 - partners allowed- MUST declare by 11pm Wed Oct 31st $\underline{\it at}$ the latest (email to Tanvir)
- Midterm #2 Fri, Nov 16
- Today's Topics:
 - Hashing

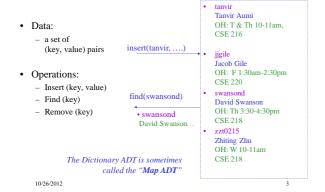
CSE 373 Data Structures and Algorithms **Ruth Anderson**

Hashing

Chapter 5 in Weiss

10/26/2012 10/26/2012

The Dictionary ADT



Dictionary Implementations

For dictionary with n key/value pairs

	insert	find	delete
 Unsorted linked-list 	0(1) *	O(n)	O(n)
 Unsorted array 	0(1) *	O(n)	O(n)
 Sorted linked list 	O(n)	O(n)	O(n)
 Sorted array 	O(n)	$O(\log n)$	O(n)
• BST			

· AVL Tree

*Note: If we do not allow duplicates values to be inserted, we would need to do O(n) work (a find operation) to check for a key's existence before insertion

1

Hash Tables

hash table

TableSize -1

Constant time accesses!
A hash table is an array of some fixed size, usually a prime number.
General idea:

hash function:
h(K)

....

10/26/2012 5

key space (e.g., integers, strings)

Hash Tables

Key space of size M, but we only want to store subset of size N, where N << M.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.

Example

- key space = integers
- TableSize = 10
- $\mathbf{h}(K) = K \mod 10$
- **Insert**: 7, 18, 41, 94

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Another Example

- key space = integers
- TableSize = 6

10/26/2012

- $\mathbf{h}(K) = K \mod 6$
- **Insert**: 7, 18, 41, 34

10/26/2012

Student Activity

2

Hash Functions

- 1. simple/fast to compute,
- 2. Avoid collisions
- 3. have keys distributed **evenly** among cells.

Perfect Hash function:

Sample Hash Functions:

- key space = strings
- $s = s_0 \ s_1 \ s_2 \ \dots \ s_{k-1}$
- 1. $h(s) = s_0 \mod TableSize$
- 2. $h(s) = \left(\sum_{i=0}^{k-1} s_i\right)$ mod TableSize 3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^i\right)$ mod TableSize

10/26/2012 10/26/2012

Designing a Hash Function for web URLs

$$s=s_0\;s_1\;s_2\;...\;s_{k\text{-}1}$$

Issues to take into account:

h(s) =

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- 2. Open Addressing (linear probing, quadratic probing, double hashing)

Student Activity

10/26/2012

Separate Chaining

• Separate chaining: All keys that map to the same hash value are kept in a list ("bucket").

Analysis of find

• The load factor, λ , of a hash table is the ratio:

 $\begin{array}{ll} \underline{N} & \leftarrow \text{no. of elements} \\ \hline M & \leftarrow \text{table size} \end{array}$

For separate chaining, $\lambda = \text{average \# of elements in a}$ bucket

· unsuccessful:

· successful:

10/26/2012 13 10/26/2012 14

How big should the hash table be?

• For Separate Chaining:

tableSize: Why Prime?

• Suppose

- data stored in hash table: 7160, 493, 60, 55, 321, 900, 810

- tableSize = 10data hashes to 0, 3, $\underline{0}$, 5, 1, $\underline{0}$, $\underline{0}$

- tableSize = 11 data hashes to 10, 9, 5, 0, 2, <u>9</u>, 7 Real-life data tends to have a pattern

Being a multiple of 11 is usually *not* the pattern ©

10262012 15 10262012 16

Open Addressing

Insert:
38
19
8
109
10

• <u>Linear Probing</u>: after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

Terminology Alert!

"Open Hashing" "Closed Hashing" equals"Separate Chaining" "Open Addressing"

Weiss

10/26/2012

Linear Probing

f(i) = i

• Probe sequence:

10/26/2012

 $\begin{aligned} &0^{th} \text{ probe} = \ h(k) \text{ mod TableSize} \\ &1^{th} \text{ probe} = (h(k)+1) \text{ mod TableSize} \\ &2^{th} \text{ probe} = (h(k)+2) \text{ mod TableSize} \\ & \dots \\ &i^{th} \text{ probe} = (h(k)+i) \text{ mod TableSize} \end{aligned}$

Linear Probing – Clustering

10/26/2012

Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)

- successful search:

$$\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)} \right)$$

- unsuccessful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

- $\frac{1}{2} \left(1 + \frac{1}{(1 \lambda)^2} \right)$ Linear probing suffers from *primary clustering*
- Performance quickly degrades for $\lambda > 1/2$

Quadratic Probing

 $f(i) = i^2$

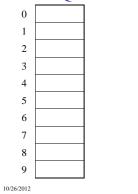
Less likely to encounter Primary Clustering

• Probe sequence:

$$\begin{aligned} &0^{th} \text{ probe} = \text{ h(k) mod TableSize} \\ &1^{th} \text{ probe} = (\text{h(k)} + 1) \text{ mod TableSize} \\ &2^{th} \text{ probe} = (\text{h(k)} + 4) \text{ mod TableSize} \\ &3^{th} \text{ probe} = (\text{h(k)} + 9) \text{ mod TableSize} \\ & ... \\ &i^{th} \text{ probe} = (\text{h(k)} + i^2) \text{ mod TableSize} \end{aligned}$$

10/26/2012 10/26/2012

Quadratic Probing



• $h(k) = k \mod 7$

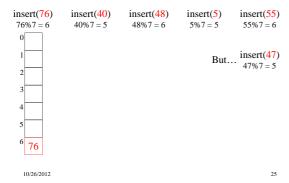
- Perform these inserts:
 - Insert(65)
 - Insert(10) - Insert(47)
- 2 3 5 6 76

Quadratic Probing:

0

10/26/2012

Quadratic Probing Example



Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all 0 ≤ i,j ≤ size/2 and i ≠ j $(h(x) + i^2) \mod size \neq (h(x) + j^2) \mod size$ – by contradiction: suppose that for some $i \neq j$: by contradiction, suppose that for some $i \neq j$. $(h(x) + i^2)$ mod size = $(h(x) + j^2)$ mod size $\Rightarrow i^2$ mod size = j^2 mod size $\Rightarrow (i^2 - j^2)$ mod size = 0 $\Rightarrow [(i + j)(i - j)]$ mod size = 0 BUT size does not divide (i-j) or (i+j)

10/26/2012

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger $\hat{\lambda}$, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad
- But what about keys that hash to the same spot?
 - Secondary Clustering!

Double Hashing

f(i) = i * g(k)where g is a second hash function

• Probe sequence:

```
0^{th} probe = h(k) mod TableSize
1^{th} probe = (h(k) + g(k)) mod TableSize
2^{th} \ probe = (h(k) + 2*g(k)) \ mod \ Table Size
3^{th} probe = (h(k) + 3*g(k)) mod TableSize
i^{th} \ probe = (h(\underline{k}) + i*g(\underline{k})) \ mod \ TableSize
```

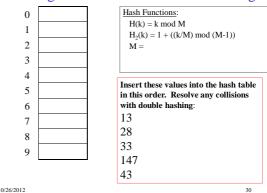
10/26/2012 27 10/26/2012

Double Hashing Example

 $\begin{array}{l} i^{th} \ probe = (h(\underline{k}) + i*g(\underline{k})) \ mod \ TableSize \\ h(k) = k \ mod \ 7 \ and \ g(k) = 5 - (k \ mod \ 5) \end{array}$

	76		93	40		47					10		55	
0		0		0			0		()		0		
1		1		1			1	47	1	l	47	1	47	
2		2	93	2	93		2	93	2	2	93	2	93	
3		3		3			3		3	3	10	3	10	
4		4		4			4		4	1		4	55	
5		5		5	40		5	40	5	5	40	5	40	
6	76	6	76	6	76		6	76	6	6	76	6	76	
Probes	1		1		1			2			1		2	
10/2	6/2012												29	

Resolving Collisions with Double Hashing



Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- · Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.

10/26/2012 31 10/26/2012 3