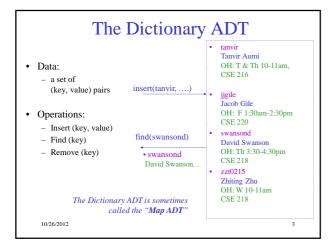


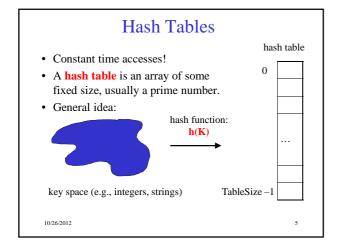
Today's Outline

- Announcements
 - Homework #4 coming soon:
 - Java programming: disjoint sets and mazes
 - · due Thurs, Nov 8th
 - • partners allowed- MUST declare by 11pm Wed Oct 31^{st} \underline{at} $\underline{the\ latest}$ (email to Tanvir)
 - Midterm #2 Fri, Nov 16
- Today's Topics:
 - Hashing

10/26/2012 2



Dictionary Implementations For dictionary with n key/value pairs find insert · Unsorted linked-list 0(1) * O(n)O(n)0(1) * Unsorted array O(n)O(n)Sorted linked list O(n)O(n)O(n)Sorted array O(n) $O(\log n)$ O(n)BST AVL Tree 10/26/2012 *Note: If we do not allow duplicates values to be inserted, we would need to do O(n) work (a find operation) to check for a key's existence before insertion



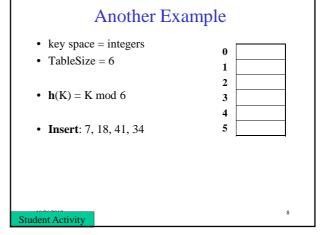
Hash Tables

Key space of size M, but we only want to store subset of size N, where N<<M.

- Keys are identifiers in programs. Compiler keeps track of them in a symbol table.
- Keys are student names. We want to look up student records quickly by name.
- Keys are chess configurations in a chess playing program.
- Keys are URLs in a database of web pages.

10/26/2012 6

Example • key space = integers • TableSize = 10 • h(K) = K mod 10 • Insert: 7, 18, 41, 94 6 7 8 9



Hash Functions

- 1. simple/fast to compute,
- 2. Avoid collisions
- 3. have keys distributed **evenly** among cells.

Perfect Hash function:

10/26/2012

- key space = strings
- $s = s_0 s_1 s_2 \dots s_{k-1}$

10/26/2012

- 1. $h(s) = s_0 \mod TableSize$
- 2. $h(s) = \left(\sum_{i=0}^{k-1} s_i\right)$ mod TableSize
- 3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^{-i}\right) \mod Table Size$

Designing a Hash Function for web URLs

$$s = s_0 s_1 s_2 \dots s_{k-1}$$

Issues to take into account:

h(s) =

Student Activity

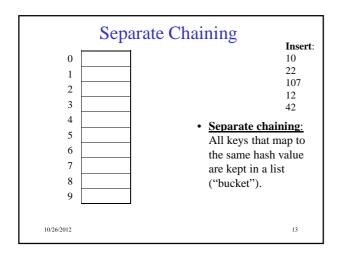
Collision Resolution

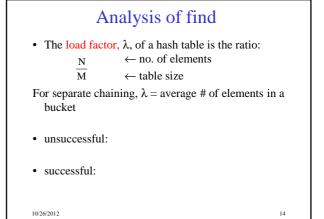
Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- Open Addressing (linear probing, quadratic probing, double hashing)

10/26/2012





How big should the hash table be?

• For Separate Chaining:

tableSize: Why Prime?

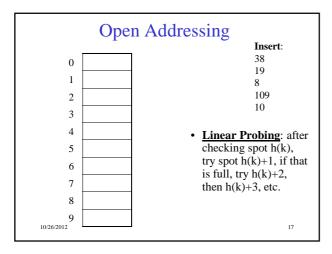
• Suppose

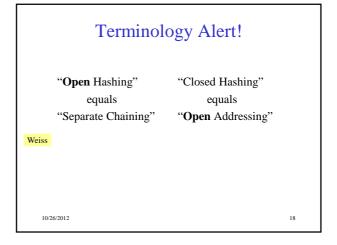
- data stored in hash table: 7160, 493, 60, 55, 321, 900, 810

- tableSize = 10
 data hashes to 0, 3, $\underline{0}$, 5, 1, $\underline{0}$, $\underline{0}$ - tableSize = 11
 data hashes to 10, 9, 5, 0, 2, $\underline{9}$, 7

Real-life data tends to have a pattern

Being a multiple of 11 is usually *not* the pattern \odot





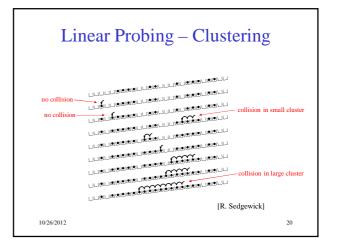
Linear Probing

f(i) = i

• Probe sequence:

$$\begin{split} 0^{th} & probe = \ h(k) \ mod \ TableSize \\ 1^{th} & probe = (h(k)+1) \ mod \ TableSize \\ 2^{th} & probe = (h(k)+2) \ mod \ TableSize \\ & \dots \\ i^{th} & probe = (h(k)+i) \ mod \ TableSize \end{split}$$

10/26/2012



Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$$

- unsuccessful search:

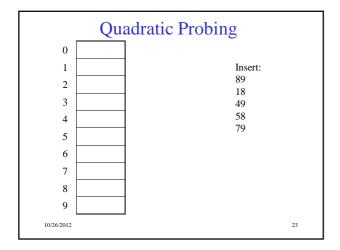
$$\frac{1}{2} \left(1 + \frac{1}{\left(1 - \lambda \right)^2} \right)$$

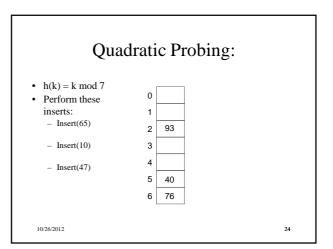
21

- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda > 1/2$

10/26/2012

$\begin{array}{c} \textbf{Quadratic Probing} \\ f(i) = i^2 \end{array} \qquad \begin{array}{c} \textbf{Less likely to} \\ \textbf{encounter} \\ \textbf{Primary} \\ \textbf{Clustering} \end{array}$ $\textbf{• Probe sequence:} \\ 0^{th} \textbf{probe} = h(\textbf{k}) \textbf{mod TableSize} \\ 1^{th} \textbf{probe} = (h(\textbf{k}) + 1) \textbf{mod TableSize} \\ 2^{th} \textbf{probe} = (h(\textbf{k}) + 4) \textbf{mod TableSize} \\ 3^{th} \textbf{probe} = (h(\textbf{k}) + 9) \textbf{mod TableSize} \\ \dots \\ i^{th} \textbf{probe} = (h(\textbf{k}) + i^2) \textbf{mod TableSize} \end{array}$





Quadratic Probing Example insert(40) insert(55) insert(76) insert(48) insert(5) 76%7 = 6 40%7 = 5 48%7 = 6 5%7 = 5 55%7 = 6 insert(47) But... 47%7 = 5 76 10/26/2012

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all $0 \le i, j \le size/2$ and $i \ne j$ $(h(x) + i^2)$ mod size $\ne (h(x) + j^2)$ mod size
 - by contradiction: suppose that for some $i \neq j$: $(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}$
 - $\Rightarrow i^2 \mod \text{size} = j^2 \mod \text{size}$ $\Rightarrow (i^2 j^2) \mod \text{size} = 0$ $\Rightarrow [(i + j)(i j)] \mod \text{size} = 0$

 \Rightarrow [(i + j)(i - j)] mod size = 0 BUT size does not divide (i-j) or (i+j)

10/26/2012 26

Quadratic Probing: Properties

- For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ , quadratic probing may find a slot
- Quadratic probing does not suffer from *primary* clustering: keys hashing to the same *area* are not bad
- But what about keys that hash to the same *spot*?

– Secondary Clustering!

10/26/2012 27

Double Hashing

f(i) = i * g(k)

where g is a second hash function

• Probe sequence:

 0^{th} probe = h(k) mod TableSize

 1^{th} probe = (h(k) + g(k)) mod TableSize

 2^{th} probe = (h(k) + 2*g(k)) mod TableSize

 3^{th} probe = (h(k) + 3*g(k)) mod TableSize

. . .

 i^{th} probe = $(h(\underline{k}) + i*g(\underline{k}))$ mod TableSize

10/26/2012 28

Double Hashing Example

 i^{th} probe = $(h(\underline{k}) + i*g(\underline{k}))$ mod TableSize h(k) = k mod 7 and g(k) = 5 - (k mod 5)

93 76 40 47 10 55 0 0 0 0 0 0 47 47 47 1 1 1 1 1 2 93 2 93 2 93 2 93 2 93 3 3 3 10 3 10 3 3 4 4 4 4 4 4 55 40 5 5 40 5 5 40 5 40 5 6 6 76 6 76 76 6 76 6 76 6 76 Probes 2 10/26/2012

Resolving Collisions with Double Hashing

 $\begin{tabular}{ll} \hline $Hash Functions: \\ \hline $H(k) = k \bmod M$ \\ \hline $H_2(k) = 1 + ((k/M) \bmod (M-1))$ \\ \hline $M = $. \end{tabular}$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13

28

33

147

10/26/2012

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

10/26/2012

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.

10/26/2012 32