## Graphs: Definitions and

Representations
(Chapter 9)

CSE 373
Data Structures and Algorithms
$\qquad$

## Today's Outline

$\qquad$

- Admin: $\qquad$
- Homework \#4 - due Thurs, Nov $8^{\text {th }}$ at 11 pm
- Midterm 2, Fri Nov 16
- Memory hierarchy

Graphs

- Representations


## Graphs

$\qquad$

- A graph is a formalism for representing relationships among items $\qquad$
- Very general definition because very general concept
- A graph is a pair
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- A set of vertices, also known as nodes
$\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- A set of edges
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- Each edge $\mathbf{e}_{\mathbf{i}}$ is a pair of vertices $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)$
- An edge "connects" the vertices

$\mathbf{v}=\{$ Han, Leia, Luke $\}$
$\mathbf{E}=\{($ Luke, Leia $)$
(Han,Leia) (Leia, Han) \}
$\qquad$
$\qquad$
$\qquad$
$\qquad$
- Graphs can be directed or undirected

11/02/2012 $\qquad$

## An ADT?

- Can think of graphs as an ADT with operations like isEdge ( $\left(\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right)$ )
- But what the "standard operations" are is unclear
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:

1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

- To make the formulation easy and standard, we have a lot of standard terminology about graphs

11/022012

## Some graphs

$\qquad$

For each, what are the vertices and what are the edges? $\qquad$

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps) $\qquad$
- Airline routes
- Family trees
- Course pre-requisites $\qquad$
- ...

11/02/2012 5

## Undirected Graphs

$\qquad$

- In undirected graphs, edges have no specific direction $\qquad$
- Edges are always "two-way"

$\qquad$
$\qquad$
- Thus, ( $\mathbf{u}, \mathbf{v}$ ) $\in \mathrm{E}$ implies $(\mathbf{v}, \mathbf{u}) \in \mathrm{E}$.
- Only one of these edges needs to be in the set; the other is $\qquad$ implicit
- Degree of a vertex: number of edges containing that vertex $\qquad$
- Put another way: the number of adjacent vertices

110222012

## Directed graphs

$\qquad$

- In directed graphs (sometimes called digraphs), edges have a specific direction

or

- Thus, $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ does not imply $(\mathbf{v}, \mathbf{u}) \in \mathbf{E}$.
- Let $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ mean $u \rightarrow v$ and call $\mathbf{u}$ the source and $\mathbf{v}$ the destination
- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source
7
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Self-edges, connectedness, etc.

$\qquad$

- A self-edge a.k.a. a loop is an edge of the form ( $u, u$ ) $\qquad$
- Depending on the use/algorithm, a graph may have:
- No self edges
- Some self edges $\qquad$
- All self edges (in which case often implicit, but we will be explicit) $\qquad$
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected (In an undirected graph, $\qquad$ this means we can follow edges from any node to every other node), even if every node has non-zero degree
$\qquad$


## More notation

For a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ :

- $|\mathrm{v}|$ is the number of vertices
- $|\mathbf{E}|$ is the number of edges
- Minimum?
- Maximum for undirected?

$\qquad$
- Maximum for directed?
( $\mathrm{A}, \mathrm{B}$ ),
(B, A)
(C, D) \}
- If $(u, v) \in E$
- Then $\mathbf{v}$ is a neighbor of $\mathbf{u}$,
i.e., $\mathbf{v}$ is adjacent to $\mathbf{u}$
- Order matters for directed edges

[^0]$\qquad$

## More notation

For a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ :

- $|\mathrm{V}|$ is the number of vertices

$\qquad$
$\qquad$
- $|E|$ is the number of edges
- Minimum?

0

- Maximum for undirected? $|\mathrm{v}||\mathrm{v}+1| / 2 \in \mathrm{O}\left(|\mathrm{v}|^{2}\right)$
- Maximum for directed? $\quad|\mathrm{v}|^{2} \in O\left(|\mathrm{v}|^{2}\right)$
(assuming self-edges allowed, else subtract $|\mathrm{v}|$ )
- If (u, v) $\in \mathrm{E}$
- Then $\mathbf{v}$ is a neighbor of $\mathbf{u}$,
i.e., $\mathbf{v}$ is adjacent to $\mathbf{u}$
- Order matters for directed edges: In this example $\mathbf{v}$ is adjacent to $\mathbf{u}$, but $\mathbf{u}$ is not adjacent to $\mathbf{v}$ (unless $(\mathbf{v}, \mathbf{u}) \in \mathrm{E}$ )


## Examples again

$\qquad$

Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other $\qquad$
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ..

11/02/2012

## Weighted graphs

$\qquad$

- In a weighed graph, each edge has a weight a.k.a. cost
- Typically numeric (most examples will use ints)
$\qquad$
- Orthogonal to whether graph is directed
- Some graphs allow negative weights; many don't $\qquad$

$\qquad$
Kingston $\bigcirc{ }^{30} \bigcirc$ Edmonds

Bremerton
11/02/2012

## Examples

$\qquad$

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

11/02/2012

## Paths and Cycles

- A path is a list of vertices $\left[\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right.$ ] such that
$\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in \mathbf{E}$ for all $0 \leq \mathbf{i}<\mathbf{n}$. Say "a path from $\mathbf{v}_{0}$ to $\mathbf{v}_{\mathbf{n}}$ "
- A cycle is a path that begins and ends at the same node $\left(\mathbf{v}_{0}==\mathbf{v}_{\mathrm{n}}\right)$ $\qquad$

$\qquad$
$\qquad$
$\qquad$
Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] 11/02/2012

$$
14
$$

## Path Length and Cost

- Path length: Number of edges in a path (also called "unweighted cost")
- Path cost: sum of the weights of each edge $\qquad$

Example where:
$\mathrm{P}=$ [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]
$\qquad$

length $(P)=4$ $\operatorname{cost}(P)=9.5$
$\qquad$


## Simple paths and cycles

- A simple path repeats no vertices, (except the first might be the last) [Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins:

Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A simple cycle is a cycle and a simple path:
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs $\qquad$

Example: $\qquad$


Is there a path from $A$ to $D$ ?

Does the graph contain any cycles?
$\qquad$

## Paths/cycles in directed graphs

$\qquad$

Example:


Is there a path from $A$ to $D ? N o$
Does the graph contain any cycles? No
$\qquad$
$\qquad$

## Undirected graph connectivity

$\qquad$

- An undirected graph is connected if for all $\qquad$ pairs of vertices $\mathbf{u}, \mathbf{v}$, there exists a path from $\mathbf{u}$ to $\mathbf{v}$
- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices $\mathbf{u}, \mathbf{v}$, there exists an edge from $\mathbf{u}$ to $\mathbf{v}$

11/0220012

## Directed graph connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex
- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges
- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex



## Examples

$\qquad$

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links $\qquad$
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other $\qquad$
- Road maps (e.g., Google maps)
- Airline routes $\qquad$
- Family trees
- Course pre-requisites
- ... $\qquad$
$\qquad$


## Trees as graphs

When talking about graphs, Example:
we say a tree is a graph that is:

- undirected
- acyclic
- connected
So all trees are graphs, but not
all graphs are trees
How does this relate to the trees
we know and love?...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique ("special") root $\qquad$
- We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted $\qquad$ tree (just drawn differently and with undirected edges)


11/02/2012 23

## Rooted Trees (Another example)

$\qquad$

- We are more accustomed to rooted trees where:
- We identify a unique ("special") root
- We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
$\qquad$
$\qquad$



## Directed acyclic graphs (DAGs)

$\qquad$

- A DAG is a directed graph with no (directed) cycles
- Every rooted directed tree is a DAG $\qquad$
- But not every DAG is a rooted directed tree:

- Every DAG is a directed graph
- But not every directed graph is a DAG: $\qquad$



## Examples

$\qquad$

Which of our directed-graph examples do you expect to be a DAG? $\qquad$

- Web pages with links
- "Input data" for the Kevin Bacon game $\qquad$
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- .. $\qquad$
$\qquad$


## Density / sparsity

$\qquad$

- Recall: In an undirected graph, $0 \leq|\mathrm{E}|<|\mathrm{V}|^{2}$ $\qquad$
- Recall: In a directed graph: $0 \leq|\mathrm{E}| \leq|\mathrm{V}|^{2}$
- So for any graph, $|\mathrm{E}|$ is $O\left(|\mathrm{~V}|^{2}\right)$
- One more fact: If an undirected graph is connected, then $|\mathrm{E}| \geq|\mathrm{V}|-1$
- Because $|\mathrm{E}|$ is often much smaller than its maximum size, we do not always approximate as $|\mathrm{E}|$ as $O\left(|\mathrm{~V}|^{2}\right)$
- This is a correct bound, it just is often not tight
- If it is tight, i.e., $|\mathrm{E}|$ is $\Theta\left(|\mathrm{V}|^{2}\right)$ we say the graph is dense
- More sloppily, dense means "lots of edges"
- If $|\mathrm{E}|$ is $O(|\mathrm{~V}|)$ we say the graph is sparse
- More sloppily, sparse means "most (possible) edges missing"


## What's the data structure?

$\qquad$
Things we might want to do:

- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists
- find the lowest-cost path from $x$ to $y$

Which data structure is "best" can depend on:

- properties of the graph (e.g., dense versus sparse)
- the common queries (e.g., "is (u,v) an edge?" versus "what are the neighbors of node $\mathbf{u}$ ?")
We need a data structure that represents graphs:
- List of vertices + list of edges (rarely good enough)
- Adjacency Matrix
- Adjacency List

11/02/2012 $\qquad$

## Adjacency matrix

$\qquad$

- Assign each node a number from 0 to $|\mathrm{v}|-1$ $\qquad$
- $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix (i.e., 2-D array) of booleans (or 1 vs .0 )
$\qquad$ If $M$ is the matrix, then $M[u][v]==$ true means there is an edge from $\mathbf{u}$ to $\mathbf{v}$


11/02/2012

|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| A | F | T | F | F |
| B | T | F | F | F |
| C | F | T | F | T |
| D | F | F | F | F |

$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Adjacency matrix properties

- Running time to:
- Get a vertex's out-edges:
- Get a vertex's in-edges:
- Decide if some edge exists:
- Insert an edge:
- Delete an edge:

|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| A | F | T | F | F |
| B | T | F | F | F |
| C | F | T | F | T |
| D | F | F | F | F |

## - Space requirements:

- Best for sparse or dense graphs?


## Adjacency matrix properties

- Running time to
- Get a vertex's out-edges: $O(|\mathrm{~V}|)$
- Get a vertex's in-edges: $O(|\mathrm{~V}|)$
- Decide if some edge exists: $O(1)$
- Insert an edge: $O(1)$
- Delete an edge: $O(1)$

|  | A | B |  | C |
| :---: | :---: | :---: | :---: | :---: |
|  | F |  |  |  |
| A | T | F | F |  |
| B | T | F | F | F |
|  | F | T | F | T |
| D | F | F | F | F |
|  |  |  |  |  |

- Space requirements:
- $|\mathrm{V}|^{2}$ bits $\qquad$
- Best for dense graphs
$\qquad$


## Adjacency matrix properties (cont.)

- How will the adjacency matrix vary for an undirected graph? $\qquad$
- Undirected: Will be symmetric about diagonal axis
- How can we adapt the representation for weighted graphs? $\qquad$
- Instead of a boolean, store an int/double in each cell
- Need some value to represent 'not an edge'
- Say - 1 or 0

|  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| A | F | T | F | F |
| B | T | F | F | F |
| C | F | T | F | T |
| D | F | F | F | F |

$\qquad$
$\qquad$
$\qquad$

11/02/2012 $\qquad$

## Adjacency List

- Assign each node a number from 0 to $|\mathrm{v}|-1$
- An array of length $|\mathrm{v}|$ in which each entry stores a list (e.g., linked list) of all adjacent vertices




## Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges:
- Get all of a vertex's in-edges:

$\qquad$
$\qquad$
$\qquad$
- Decide if some edge exists:
- Insert an edge:
- Delete an edge: $\qquad$
- Space requirements:
- Best for dense or sparse graphs? 11/02/2012 $\qquad$


## Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges: $O(d)$ where $d$ is out-degree of vertex

- Get all of a vertex's in-edges:
Rovertar thic

O(IE|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where $d$ is out-degree of source
$\qquad$
- Insert an edge: $O(1)$
- Delete an edge: $O(d)$ where $d$ is out-degree of source $\qquad$
- Space requirements:
- $O(|\mathrm{~V}|+|\mathrm{E}|)$ $\qquad$
- Best for sparse graphs: so usually just stick with linked lists 1110220012 $\qquad$


## Undirected graphs

$\qquad$

Adjacency matrices \& adjacency lists both do fine for undirected graphs $\qquad$

- Matrix: Could save space; only $\sim 1 / 2$ the array is used
- Lists: Each edge in two lists to support efficient "get all neighbors"

Example:


## Next...

$\qquad$

Okay, we can represent graphs

Now let's implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from $x$ to $y$ - Related: Determine if there even is such a path


[^0]:    11/02/2012

