Graphs: Topological Sort / Graph Traversals (Chapter 9)

CSE 373

Data Structures and Algorithms

11/05/2012

Today's Outline

• Admin:

- Homework #4 due Thurs, Nov 8th at 11pm
- Midterm 2, Fri Nov 16

• Graphs

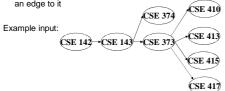
- Representations
- Topological Sort
- Graph Traversals

11/05/2012

Disclaimer: Do not use for official advising purposes!

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it

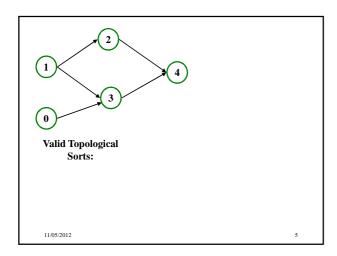


Example output:

142, 143, 374, 373, 415, 413, 410, 417

11/05/2012

Topological Sort	Disclaimer: Do not use for official advising purposes!
	(r,E), output all the vertices in order ears before any other vertex that has
	CSE 331 CSE 440
Example input:	(CSE 332)
CSE 142→CS	E 143 ← CSE 311
MATH 126	(SE 34) (SE 312) (SE 333)
	CSE 352
Example output:	
142, 126, 143, 311, 331, 3	332, 312, 341, 351, 333, 440, 352
11/05/2012	4

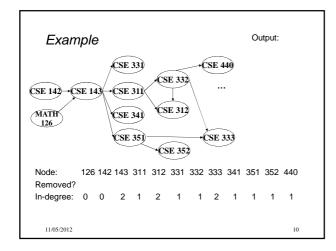


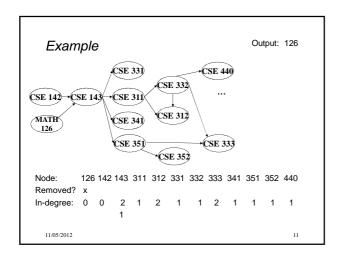
Questions and comments

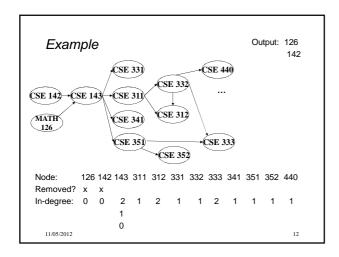
- Why do we perform topological sorts only on DAGs?
- Is there always a unique answer?
- What DAGs have exactly 1 answer?
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

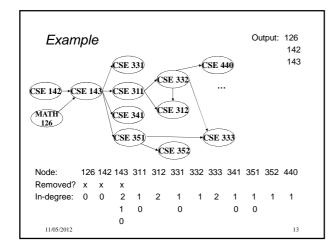
05/2012

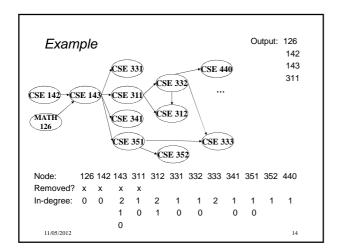
	7
Questions and comments	
Questions and comments	
Why do we perform topological sorts only on DAGs? Because a cycle means there is no correct answer.	
 Is there always a unique answer? No, there can be 1 or more answers; depends on the graph 	_
What DAGs have exactly 1 answer? Lists	
Terminology: A DAG represents a partial order and a topological	
sort produces a total order that is consistent with it	
11,05/2012 7	
	_
Uses	
Figuring out how to graduate	
Figuring out how to graduate	
 Computing the order in which to recompute cells in a spreadsheet 	
Determining the order to compile files using a Makefile	
 In general, taking a dependency graph and coming up with an order of execution 	
11/05/2012 8	
11/03/2012	
	_
A first algorithm for topological sort	-
Label each vertex with its in-degree	
Labeling also called marking	
 Think "write in a field in the vertex", though you could also do this with a data structure (e.g., array) on the side 	
While there are vertices not yet output:a) Choose a vertex v with labeled with in-degree of 0	
 b) Output v and "remove it" (conceptually) from the graph c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), 	
decrement the in-degree of u	

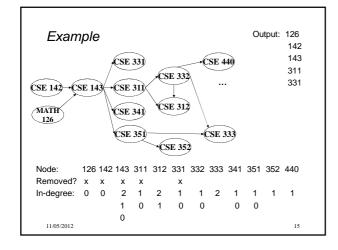


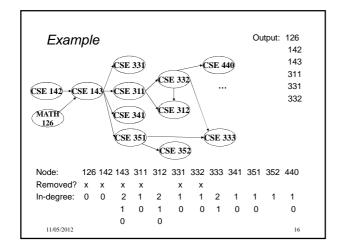


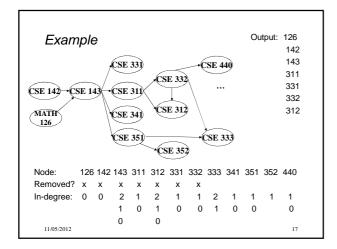


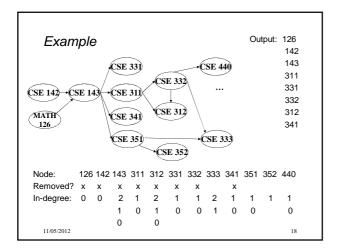


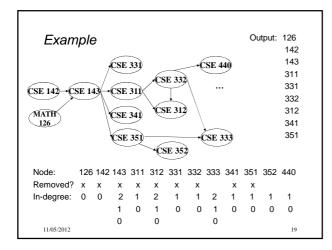


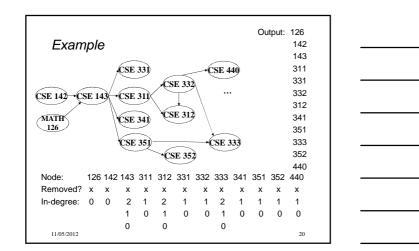












A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders

Topological Sort: Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
  v = findNewVertexOfDegreeZero();
  put v next in output
  for each w adjacent to v
    w.indegree--;
}</pre>
```

11/05/2012

22

Topological Sort: Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
  v = findNewVertexOfDegreeZero();
  put v next in output
  for each w adjacent to v
    w.indegree--;
}</pre>
```

- What is the worst-case running time?
 - Initialization O(|V| + |E|)
 - Sum of all find-new-vertex $O(|V|^2)$ (because each O(|V|))
 - Sum of all decrements O(|E|) (assuming adjacency list)
 - So total is $O(|V|^2 + |E|)$ not good for a sparse graph!

11/05/2012

23

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- 2. While queue is not empty
 - a) v = dequeue()
 - b) Output **v** and remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**, if new degree is 0, enqueue it

11/05/2012

24

Optimized Topological Sort:

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){</pre>
  v = dequeue();
  put v next in output
  for each w adjacent to v {
    w.indegree--;
    if(w.indegree==0) enqueue(w);
}
```

11/05/2012

25

Optimized Topological Sort:

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++){</pre>
  v = dequeue();
  put v next in output
  for each w adjacent to v {
    w.indegree--;
    if(w.indegree==0) enqueue(w);
```

- What is the worst-case running time?
 - Initialization: O(|V| + |E|)
 - Sum of all enqueues and dequeues: O(|V|)
 - Sum of all decrements: O(|E|) (assuming adjacency list)
 - So total is O(|E| + |V|) much better for sparse graph!

11/05/2012

Graph Traversals

Next problem: For an arbitrary graph and a starting node $\boldsymbol{v},$ find all nodes reachable (i.e., there exists a path) from ${\bf v}$

- Possibly "do something" for each node (an iterator!)
- E.g. Print to output, set some field, etc.

Related:

- · Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Graph Traversals: Abstract idea

```
traverseGraph(Node start) {
   Set pending = emptySet();
   pending.add(start)
   mark start as visited
   while(pending is not empty) {
      next = pending.remove()
      for each node u adjacent to next
        if(u is not marked) {
        mark u
        pending.add(u)
      }
}
```

11/05/2012 28

Running time and options

- Assuming add and remove are O(1), entire traversal is O(|E|)
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack "depth-first graph search" (DFS)
 - Popular choice: a queue "breadth-first graph search" (BFS)
- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first

11/05/2012

Recursive DFS, Example: trees

• A tree is a graph and DFS and BFS are particularly easy to "see"

DFS(Node start) {
 mark and "process"(e.g. print) start
 for each node u adjacent to start
 if u is not marked
 DFS(u)
}

- Order processed: A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

11/05/2012

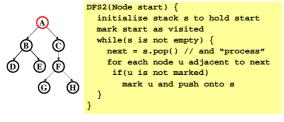
Depth First Search(DFS) with a stack:

```
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and "process"
        for each node u adjacent to next
        if(u is not marked)
            mark u and push onto s
    }
}
```

Order processed:

31

DFS with a stack, Example: trees

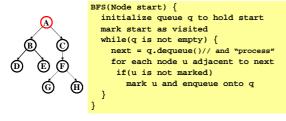


- Order processed: A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

11/05/2012

32

Breadth First Search (BFS) with a queue:



- · Order processed:
- A "level-order" traversal

33

BFS with a queue, Example: trees

```
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue()// and "process"
        for each node u adjacent to next
        if(u is not marked)
            mark u and enqueue onto q
    }
}
```

- Order processed: A, B, C, D, E, F, G, H
- A "level-order" traversal

11/05/2012

34

What if I want to find the "shortest" path?

- Breadth-first always finds shortest paths in terms of minimum number of edges from the starting node.
- An aside: Depth-first can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements
 - But a queue for BFS may hold O(|V|) nodes

11/05/2012

35

Saving the path

- Our graph traversals can answer the "reachability question":
 - "Is there a path from node x to node y?"
- Q: But what if we want to output the actual path?
 - Like getting driving directions rather than just knowing it's possible to get there!
- A: Like this:
 - Instead of just "marking" a node, store the <u>previous node</u> along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead

11/05/2012

36

Example using BFS What is a path from Seattle to Tyler - Remember marked nodes are not re-enqueued - Note shortest paths may not be unique Chicago Seattle San Francisco Dallas 37

Example using BFS	
What is a path from Seattle to Tyler Remember marked nodes are Note shortest paths may not l	
Seattle 1 Salt La San Francisco 11/05/2012	1 Chicago ake City Tyler 2 Dallas