Today's Outline

- Admin:

Graphs:
Shortest Paths
(Chapter 9)
CSE 373
Data Structures and Algorithms

- Homework \#4 - due Thurs, Nov $8^{\text {th }}$ at 11 pm
- Midterm 2, Fri Nov 16
- Graphs
- Graph Traversals
- Shortest Paths

Single source shortest paths

- Done: BFS to find the minimum path length from \mathbf{v} to \mathbf{u} in O(|E|+(|V|)
- Actually, can find the minimum path length from \mathbf{v} to every node
- Still $O(|E|+(|\mathrm{V}|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from \mathbf{v} to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

11/07/2012

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)

Not as easy

Why BFS won't work: Shortest path may not have the fewest edges - Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Next algorithm we will learn is wrong if edges can be negative

Dijkstra's Algorithm

The idea: reminiscent of BFS, but adapted to handle weights

- A priority queue will prove useful for efficiency (later)
- Will grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"

Edsger Wybe Dijkstra (1930-2002)

- Legendary figure in computer science; was a professor at University of Texas.
- Invented concepts of structured programming, synchronization, and "semaphores" for controlling computer processes.
- Supported teaching programming without computers (pencil and paper)
- 1972 Turing Award
"computer science is no more about computers than astronomy is about telescopes"

- Initially, start node (A in this case) has "cost" 0 and all other nodes have "cost" ∞
- At each step:
- Pick closest unknown vertex \mathbf{v}
- Add it to the "cloud" of known vertices
- Update "costs" for nodes with edges from v
- That's it! (Have to prove it produces correct answers)

The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}. known $=$ false
2. Set source. cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, \mathbf{u}) with weight \mathbf{w},
$\mathbf{c 1}=\mathbf{v} \cdot \operatorname{cost}+\mathbf{w} / /$ cost of best path through \mathbf{v} to \mathbf{u}
$\mathbf{c 2}=\mathbf{u}$. cost // cost of best path to u previously known
if $(\mathrm{c} 1<\mathrm{c} 2)$ \{ // if the path through \mathbf{v} is better
u.cost $=c 1$
u.path $=\mathbf{v} / /$ for computing actual paths
\}

Important features

- Once a vertex is marked known, the cost of the shortest path to that node is known
- As is the path itself
- While a vertex is still not known, another shorter path to it might still be found

Find the shortest path to each vertex from v_{0}

V	Known	Dist from s	Path
v0			
v1			
v2			
v3			
v4			
v5			
v6	107/2012		

Order declared Known:

Example \#1

Example \#1

11/0772012

Example \#1

11/07/2012

Example \#1

11/07/2012

Example \#1

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D		≤ 4	A
E		≤ 12	C
F		≤ 4	B
G		$? ?$	
H		$? ?$	

16

11/07/2012

Example \#1

11/07/2012

Example \#1

11/07/2012

Example \#1

11/07/2012

Example \#1

11/07/2012

vertex	known?	cost	path
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E		≤ 11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Example \#1

Important features

- Once a vertex is marked 'known', the cost of the shortest path to that node is known
- As is the path itself
- While a vertex is still not known, another shorter path to it might still be found

Interpreting the results

- Now that we're done, how do we get the path from, say, A to E ?

11/07/2012

Stopping Short

- How would this have worked differently if we were only interested in the path from A to G ?
- A to E ?

11/07/2012

Example \#2

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

Example \#2

vertex	known?	cost	path
A	Y	0	
B		$? ?$	
C		≤ 2	A
D		≤ 1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

11/07/2012

Example \#2

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C		≤ 2	A
D	Y	1	A
E		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Example \#2

vertex	known?	cost	path
A	Y	0	
B		≤ 6	D
C	Y	2	A
D	Y	1	A
E		≤ 2	D
F		≤ 4	C
G		≤ 6	D

11/07/2012

Example \#2

vertex	known?	cost	path
A	Y	0	
B		≤ 3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

Example \#2

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F		≤ 4	C
G		≤ 6	D

11/07/2012

Example \#2

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G		≤ 6	D

Example \#2

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

11/07/2012
32

Example \#3

How will the best-cost-so-far for Y proceed?
Is this expensive?

Example \#3

How will the best-cost-so-far for Y proceed? $90,81,72,63,54, \ldots$
Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
- at each step, irrevocably does what seems best at that step (once a vertex is in the known set, does not go back and readjust its decision)
- Locally optimal - does not always mean globally optimal

Where are we?

- Have described Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
            if(b.cost + weight ((b,a)) < a.cost){
                a.cost = b.cost + weight((b,a))
            a.path = b
        }
}

Correctness: The Cloud (Rough Idea)

11/07/2012


Suppose \(\mathbf{v}\) is the next node to be marked known ("added to the cloud")
The best-known path to \(\mathbf{v}\) must have only nodes "in the cloud"
Since we've selected it, and we only know about paths through the cloud to a node right outside the cloud
- Assume the actual shortest path to \(\mathbf{v}\) is different
- It won't use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
- Let \(\mathbf{w}\) be the first non-cloud node on this path.
- The part of the path up to \(\mathbf{w}\) is already known and must be shorter than the best-known path to \(\mathbf{v}\). So \(\mathbf{v}\) would not have been picked. Contradiction. 12

\section*{Efficiency, first approach}

Use pseudocode to determine asymptotic run-time
- Notice each edge is processed only once
dijkstra (Graph G, Node start) \{
    for each node: x.cost=infinity, x.known=false \(\mathrm{O}(|\mathrm{V}|)\)
    start. cost \(=0\)
    while (not all nodes are known) \{
        \(\mathrm{b}=\) find unknown node with smallest cost
    b. known \(=\) true
        for each edge ( \(b, a\) ) in \(G\)
            if (!a.known)
            if \((b\). cost + weight \(((b, a))<a . c o s t)\{\)
            a.cost \(=b \cdot \operatorname{cost}+\) weight \(((b, a))\)
            a. path \(=b\)
            \}
\}
11/07/2012

\section*{Improving asymptotic running time}
- So far: \(O\left(|\mathrm{~V}|^{2}\right)\)
- We had a similar "problem" with topological sort being \(O\left(|\mathrm{~V}|^{2}\right)\) due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?

\section*{Improving (?) asymptotic running time}
- So far: \(O\left(|\mathrm{~V}|^{2}\right)\)
- We had a similar "problem" with topological sort being \(O\left(|\mathrm{~V}|^{2}\right)\) due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreasekey operation
- Must maintain a reference from each node to its position in the priority queue
- Conceptually simple, but can be a pain to code up

\section*{Efficiency, second approach}

Use pseudocode to determine asymptotic run-time
```

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {
b = deleteMin()
b.known = true
for each edge (b,a) in G
if(!a.known)
if(b.cost + weight((b,a)) < a.cost){
decreaseKey(a,"new cost - old cost")
a.path = b
}
}

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

Dense vs. sparse again

- First approach: $O\left(|\mathrm{~V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
- So which is better?
- Sparse: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$ (if $|\mathrm{E}|>|\mathrm{V}|$, then $O(|\mathrm{E}| \log |\mathrm{V}|)$)
- Dense: $O\left(|\mathrm{~V}|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making $|\mathrm{E}| \mathrm{log}|\mathrm{V}|$ more like |E|

