
11/6/2012

1

11/07/2012 1

Graphs:
Shortest Paths

(Chapter 9)

CSE 373
Data Structures and Algorithms

11/07/2012 2

Today’s Outline

• Admin:
– Homework #4 - due Thurs, Nov 8th at 11pm
– Midterm 2, Fri Nov 16

• Graphs
– Graph Traversals
– Shortest Paths

Single source shortest paths

• Done: BFS to find the minimum path length from v to u in
O(|E|+(|V|)

• Actually, can find the minimum path length from v to every node
– Still O(|E|+(|V|)

– No faster way for a “distinguished” destination in the worst-case

• Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

• As before, asymptotically no harder than for one destination
• Unlike before, BFS will not work

11/07/2012 3

Applications

– Network routing

– Driving directions

– Cheap flight tickets

– Critical paths in project management
(see textbook)

– …

11/6/2012

2

Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
– Annoying when this happens with costs of flights

11/07/2012 5

500

100
100 100

100

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Next algorithm we will learn is wrong if edges can be negative

7

10 5

-11

Edsger Wybe Dijkstra
(1930-2002)

• Legendary figure in computer science; was a professor at University of
Texas.

• Invented concepts of structured programming, synchronization, and
"semaphores" for controlling computer processes.

• Supported teaching programming without computers (pencil and paper)
• 1972 Turing Award
• “computer science is no more about computers than astronomy is about

telescopes”

11/07/2012 6

Dijkstra’s Algorithm

The idea: reminiscent of BFS, but adapted to handle weights
• A priority queue will prove useful for efficiency (later)
• Will grow the set of nodes whose shortest distance has been

computed
• Nodes not in the set will have a “best distance so far”

11/07/2012 7

Dijkstra’s Algorithm: Idea

11/07/2012 8

• Initially, start node (A in this case) has “cost” 0 and all other nodes

have “cost” ∞
• At each step:

– Pick closest unknown vertex v
– Add it to the “cloud” of known vertices

– Update “costs” for nodes with edges from v

• That’s it! (Have to prove it produces correct answers)

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2 3

110 2
3

111

7

1

9

2

4 5

11/6/2012

3

The Algorithm

1. For each node v , set v.cost = ∞∞∞∞ and v.known = false

2. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known

if(c1 < c2){ // if the path through v is better
u.cost = c1

u.path = v // for computing actual paths

}

11/07/2012 9

Important features

• Once a vertex is marked known, the cost of the shortest path to
that node is known
– As is the path itself

• While a vertex is still not known, another shorter path to it might
still be found

11/07/2012 10

v3

v6

v1

v2 v4

v5

v0s

1

2

2

2
1

1 1

5 3

5

6

10

V Known Dist
from s

Path

v0

v1

v2

v3

v4

v5

v6

Find the shortest path to
each vertex from v0

Order declared Known:

11/07/2012 11

Example #1

11/07/2012 12

A B

D
C

F H

E

G

0 � � �

�

�

�

�

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A

B

C

D

E

F

G

H

5

11/6/2012

4

Example #1

11/07/2012 13

A B

D
C

F H

E

G

0 � � �

�

�

�

�

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??

5

Example #1

11/07/2012 14

A B

D
C

F H

E

G

0 2 � �

4

1

�

�

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B ≤ 2 A

C ≤ 1 A

D ≤ 4 A

E ??

F ??

G ??

H ??

5

Example #1

11/07/2012 15

A B

D
C

F H

E

G

0 2 � �

4

1

12

�

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B ≤ 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ??

G ??

H ??

5

Example #1

11/07/2012 16

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D ≤ 4 A

E ≤ 12 C

F ≤ 4 B

G ??

H ??

5

11/6/2012

5

Example #1

11/07/2012 17

A B

D
C

F H

E

G

0 2 4 �

4

1

12

�

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F ≤ 4 B

G ??

H ??

5

Example #1

11/07/2012 18

A B

D
C

F H

E

G

0 2 4 7

4

1

12

�

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ??

H ≤ 7 F

5

Example #1

11/07/2012 19

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 12 C

F Y 4 B

G ≤ 8 H

H Y 7 F

5

Example #1

11/07/2012 20

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E ≤ 11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

11/6/2012

6

Example #1

11/07/2012 21

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Important features

• Once a vertex is marked ‘known’, the cost of the shortest path to
that node is known
– As is the path itself

• While a vertex is still not known, another shorter path to it might
still be found

11/07/2012 22

Interpreting the results
• Now that we’re done, how do we get the path from, say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

11/07/2012 23

Stopping Short
• How would this have worked differently if we were only interested in

the path from A to G?

– A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

111

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

11/07/2012 24

11/6/2012

7

Example #2

11/07/2012 25

A B

C
D

F

E

G

0 �

�

�

�

�

�

2

1
2

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

5

1
1

1

2 6

5 3

10

Example #2

11/07/2012 26

A B

C
D

F

E

G

0 �

�

2

1

�

�

2

1
2

vertex known? cost path

A Y 0

B ??

C ≤ 2 A

D ≤ 1 A

E ??

F ??

G ??

5

1
1

1

2 6

5 3

10

Example #2

11/07/2012 27

A B

C
D

F

E

G

0 6

7

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B ≤ 6 D

C ≤ 2 A

D Y 1 A

E ≤ 2 D

F ≤ 7 D

G ≤ 6 D

5

1
1

1

2 6

5 3

10

Example #2

11/07/2012 28

A B

C
D

F

E

G

0 6

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B ≤ 6 D

C Y 2 A

D Y 1 A

E ≤ 2 D

F ≤ 4 C

G ≤ 6 D

5

1
1

1

2 6

5 3

10

11/6/2012

8

Example #2

11/07/2012 29

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B ≤ 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F ≤ 4 C

G ≤ 6 D

5

1
1

1

2 6

5 3

10

Example #2

11/07/2012 30

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F ≤ 4 C

G ≤ 6 D

5

1
1

1

2 6

5 3

10

Example #2

11/07/2012 31

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G ≤ 6 D

5

1
1

1

2 6

5 3

10

Example #2

11/07/2012 32

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

5

1
1

1

2 6

5 3

10

11/6/2012

9

Example #3

11/07/2012 33

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed?

Is this expensive?

…

Example #3

11/07/2012 34

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive? No, each edge is processed only once

…

A Greedy Algorithm

• Dijkstra’s algorithm
– For single-source shortest paths in a weighted graph (directed

or undirected) with no negative-weight edges
– An example of a greedy algorithm:

• at each step, irrevocably does what seems best at that
step (once a vertex is in the known set, does not go back
and readjust its decision)

• Locally optimal – does not always mean globally optimal

11/07/2012 35

Where are we?

• Have described Dijkstra’s algorithm
– For single-source shortest paths in a weighted graph (directed

or undirected) with no negative-weight edges

• What should we do after learning an algorithm?

– Prove it is correct
• Not obvious!

• We will sketch the key ideas
– Analyze its efficiency

• Will do better by using a data structure we learned earlier!

11/07/2012 36

11/6/2012

10

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path

– True initially: shortest path to start node has cost 0
– If it stays true every time we mark a node “known”, then by

induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t
discover a shorter path later!

– This holds only because Dijkstra’s algorithm picks the node
with the next shortest path-so-far

– The proof is by contradiction…

11/07/2012 37

Correctness: The Cloud (Rough Idea)

11/07/2012 38

The Known

Cloud

v Next shortest path from
inside the known cloud

w

Better path to
v? No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)

• The best-known path to v must have only nodes “in the cloud”

– Since we’ve selected it, and we only know about paths through the cloud to
a node right outside the cloud

• Assume the actual shortest path to v is different

– It won’t use only cloud nodes, (or we would know about it), so it must use
non-cloud nodes

– Let w be the first non-cloud node on this path.

– The part of the path up to w is already known and must be shorter than the
best-known path to v. So v would not have been picked. Contradiction.

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

11/07/2012 39

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))
a.path = b

}
}

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

11/07/2012 40

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))
a.path = b

}
}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)

11/6/2012

11

Improving asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2)
due to each iteration looking for the node to process next
– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can
change as we process edges

• Solution?

11/07/2012 41

Improving (?) asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2)
due to each iteration looking for the node to process next
– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can
change as we process edges

• Solution?
– A priority queue holding all unknown nodes, sorted by cost
– But must support decreaseKey operation

• Must maintain a reference from each node to its position
in the priority queue

• Conceptually simple, but can be a pain to code up

11/07/2012 42

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

43

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}

4311/07/2012

Efficiency, second approach
Use pseudocode to determine asymptotic run-time

11/07/2012 44

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)

11/6/2012

12

Dense vs. sparse again

• First approach: O(|V|2)

• Second approach: O(|V|log|V|+|E|log|V|)

• So which is better?

– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
– Dense: O(|V|2)

• But, remember these are worst-case and asymptotic
– Priority queue might have slightly worse constant factors

– On the other hand, for “normal graphs”, we might call
decreaseKey rarely (or not percolate far), making |E|log|V|
more like |E|

11/07/2012 45

