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Graphs:
Shortest Paths

(Chapter 9)

CSE 373
Data Structures and Algorithms
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Today’s Outline

• Admin: 
– Homework #4 - due Thurs, Nov 8th at 11pm
– Midterm 2, Fri Nov 16

• Graphs
– Graph Traversals
– Shortest Paths

Single source shortest paths

• Done: BFS to find the minimum path length from v to u in 
O(|E|+(|V|)

• Actually, can find the minimum path length from v to every node
– Still O(|E|+(|V|)

– No faster way for a “distinguished” destination in the worst-case

• Now:  Weighted graphs 

Given a weighted graph and node v, 
find the minimum-cost path from v to every node 

• As before, asymptotically no harder than for one destination
• Unlike before, BFS will not work
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Applications

– Network routing

– Driving directions

– Cheap flight tickets

– Critical paths in project management
(see textbook)

– …
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Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
– Annoying when this happens with costs of flights
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We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Next algorithm we will learn is wrong if edges can be negative
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Edsger Wybe Dijkstra 
(1930-2002)

• Legendary figure in computer science; was a professor at University of 
Texas.

• Invented concepts of structured programming, synchronization, and 
"semaphores" for controlling computer processes. 

• Supported teaching programming without computers (pencil and paper)
• 1972 Turing Award
• “computer science is no more about computers than astronomy is about 

telescopes”
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Dijkstra’s Algorithm

The idea: reminiscent of BFS, but adapted to handle weights
• A priority queue will prove useful for efficiency (later)
• Will grow the set of nodes whose shortest distance has been 

computed
• Nodes not in the set will have a “best distance so far”
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Dijkstra’s Algorithm: Idea
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• Initially, start node (A in this case) has “cost” 0 and all other nodes 

have “cost” ∞
• At each step:

– Pick closest unknown vertex v
– Add it to the “cloud” of known vertices

– Update “costs” for nodes with edges from v

• That’s it!  (Have to prove it produces correct answers)
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The Algorithm

1. For each node v , set  v.cost = ∞∞∞∞ and v.known = false

2. Set source.cost = 0

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known
c) For each edge (v,u) with weight w,

c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known

if(c1 < c2){ // if the path through v is better
u.cost = c1

u.path = v // for computing actual paths

}
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Important features

• Once a vertex is marked known, the cost of the shortest path to 
that node is known
– As is the path itself

• While a vertex is still not known, another shorter path to it might 
still be found
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Example #1
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Example #1
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Important features

• Once a vertex is marked ‘known’, the cost of the shortest path to 
that node is known
– As is the path itself

• While a vertex is still not known, another shorter path to it might 
still be found
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Interpreting the results
• Now that we’re done, how do we get the path from, say, A to E?
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Stopping Short
• How would this have worked differently if we were only interested in 

the path from A to G?

– A to E?
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Example #3
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Example #3
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Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed?  90, 81, 72, 63, 54, …

Is this expensive?  No, each edge is processed only once

…

A Greedy Algorithm

• Dijkstra’s algorithm
– For single-source shortest paths in a weighted graph (directed 

or undirected) with no negative-weight edges
– An example of a greedy algorithm: 

• at each step, irrevocably does what seems best at that 
step (once a vertex is in the known set, does not go back 
and readjust its decision)

• Locally optimal – does not always mean globally optimal
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Where are we?

• Have described Dijkstra’s algorithm
– For single-source shortest paths in a weighted graph (directed 

or undirected) with no negative-weight edges

• What should we do after learning an algorithm?

– Prove it is correct
• Not obvious!

• We will sketch the key ideas
– Analyze its efficiency

• Will do better by using a data structure we learned earlier!
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Correctness: Intuition

Rough intuition: 

All the “known” vertices have the correct shortest path

– True initially: shortest path to start node has cost 0
– If it stays true every time we mark a node “known”, then by 

induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t 
discover a shorter path later!

– This holds only because Dijkstra’s algorithm picks the node 
with the next shortest path-so-far

– The proof is by contradiction…
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Correctness: The Cloud (Rough Idea)
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The Known 

Cloud

v Next shortest path from 
inside the known cloud

w

Better path to 
v?  No!

Source

Suppose v is the next node to be marked known (“added to the cloud”)

• The best-known path to v must have only nodes “in the cloud”

– Since we’ve selected it, and we only know about paths through the cloud to 
a node right outside the cloud

• Assume the actual shortest path to v is different

– It won’t use only cloud nodes, (or we would know about it), so it must use 
non-cloud nodes

– Let w be the first non-cloud node on this path.  

– The part of the path up to w is already known and must be shorter than the 
best-known path to v.  So v would not have been picked.  Contradiction.

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))
a.path = b

}
}

Efficiency, first approach
Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once
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dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
while(not all nodes are known) {

b = find unknown node with smallest cost
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

a.cost = b.cost + weight((b,a))
a.path = b

}
}

O(|V|)

O(|V|2)

O(|E|)

O(|V|2)
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Improving asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2) 
due to each iteration looking for the node to process next
– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can 
change as we process edges

• Solution?
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Improving (?) asymptotic running time

• So far: O(|V|2)

• We had a similar “problem” with topological sort being O(|V|2) 
due to each iteration looking for the node to process next
– We solved it with a queue of zero-degree nodes

– But here we need the lowest-cost node and costs can 
change as we process edges

• Solution?
– A priority queue holding all unknown nodes, sorted by cost
– But must support decreaseKey operation

• Must maintain a reference from each node to its position 
in the priority queue

• Conceptually simple, but can be a pain to code up
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Efficiency, second approach
Use pseudocode to determine asymptotic run-time

43

dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}
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Efficiency, second approach
Use pseudocode to determine asymptotic run-time
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dijkstra(Graph G, Node start) {
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while(heap is not empty) {

b = deleteMin()
b.known = true
for each edge (b,a) in G

if(!a.known)
if(b.cost + weight((b,a)) < a.cost){

decreaseKey(a,“new cost – old cost”)
a.path = b

}
}

O(|V|)

O(|V|log|V|)

O(|E|log|V|)

O(|V|log|V|+|E|log|V|)
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Dense vs. sparse again

• First approach: O(|V|2)

• Second approach: O(|V|log|V|+|E|log|V|)

• So which is better?

– Sparse: O(|V|log|V|+|E|log|V|) (if |E| > |V|, then O(|E|log|V|))
– Dense: O(|V|2)

• But, remember these are worst-case and asymptotic
– Priority queue might have slightly worse constant factors

– On the other hand, for “normal graphs”, we might call 
decreaseKey rarely (or not percolate far), making |E|log|V| 
more like |E|
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