

CSE 373: Data Abstractions Minimum Spanning Trees

Ruth Anderson Autumn 2012

Minimum Spanning Trees

Given an undirected graph G=(V,E), find a graph G'=(V, E') such

- E' is a subset of E
- |E'| = |V| 1G' is connected

G' is a minimum spanning tree.

 $\sum_{(u,v)\in E'} c_{uv}$ is minimal

- Example: Electrical wiring for a house or clock wires on a chip
 Example: A road network if you cared about asphalt cost rather than travel time

-			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
<u>-</u>			
- -			
- -			
- -			
-			
-			
-			
_			
_ _ _			
- - -			
_			
- - -			
-			
-			
-			

Two Different Approaches	
Prim's Algorithm Almost identical to Dijkstra's Kruskals's Algorithm Completely different!	
11/16/2012 4	
Prim's algorithm	
Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the	
smallest cost that connects "known" to "unknown." A node-based greedy algorithm Builds MST by greedily adding nodes	
G	
known	
11/16/2012 5	
	1
Prim's Algorithm vs. Dijkstra's	

Recall:

Dijkstra picked the unknown vertex with smallest cost where cost = *distance to the source*.

Prim's pick the unknown vertex with smallest cost where cost = distance from this vertex to the known set (in other words, the cost of the smallest edge connecting this vertex to the known set)

- Otherwise identical

Prim's Algorithm for MST

- 1. For each node v, set $v \cdot cost = \infty$ and $v \cdot known = false$
- 2. Choose any node ${\tt v.}$ (this is like your "start" vertex in Dijkstra)
 - a) Mark v as known
 - b) For each edge (v,u) with weight w: set u.cost=w and u.prev=v
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node ${\bf v}$ with lowest cost
 - b) Mark \mathbf{v} as known and add (\mathbf{v} , \mathbf{v} .prev) to output (the MST)
 - c) For each edge (v,u) with weight w,

```
if(w < u.cost) {
   u.cost = w;
   u.prev = v;
}</pre>
```

11/16/2012

Example: Find MST using Prim's

vertex	known?	cost	prev
Α		??	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

11/16/2012

Example: Find MST using Prim's

vertex	known?	cost	prev
Α	Υ	0	
В		2	Α
С		2	Α
D		1	Α
Е		??	
F		??	
G		??	

11/16/2012

Example: Find MST using Prim's

vertex	known?	cost	prev
Α	Υ	0	
В		2	Α
С		1	D
D	Y	1	Α
Е		1	D
F		6	D
G		5	D

11/16/2012

Example: Find MST using Prim's

known?	cost	prev
Υ	0	
	2	Α
Y	1	D
Υ	1	Α
	1	D
	2	С
	5	D
	Y Y Y Y	Y 0 2 Y 1 Y 1 1 2 2

11/16/2012

Example: Find MST using Prim's

vertex	known?	cost	prev
Α	Υ	0	
В		1	Е
С	Υ	1	D
D	Y	1	Α
Е	Υ	1	D
F		2	С
G		3	Е
		0	0

Example: Find MST using Prim's

vertex	known?	cost	prev
Α	Υ	0	
В	Υ	1	Е
С	Υ	1	D
D	Υ	1	Α
E	Υ	1	D
F		2	С
G		3	E

11/16/2012

Example: Find MST using Prim's

vertex	known?	cost	prev
Α	Υ	0	
В	Υ	1	E
С	Y	1	D
D	Υ	1	Α
E	Υ	1	D
F	Y	2	С
G		3	E

11/16/2012

Example: Find MST using Prim's

vertex	known?	cost	prev
VEITEX	KIIOWII:	COST	piev
Α	Υ	0	
В	Υ	1	Е
С	Υ	1	D
D	Υ	1	Α
Е	Υ	1	D
F	Υ	2	С
G	Y	3	Е
			<u> </u>

Prim's Analysis

- Correctness ??
 - A bit tricky
 - Intuitively similar to Dijkstra
 - Might return to this time permitting (unlikely)
- Run-time
 - Same as Dijkstra
 - O(|E|log |V|) using a priority queue

11/16/2012

11/16/2012

012

17

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight. G=(V,E)

Kruskal's Algorithm for MST

An edge-based greedy algorithm Builds MST by greedily adding edges

- 1. Initialize with
 - empty MST
- all vertices marked unconnected
- all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the lowest cost edge (u,v) and mark it
 - b. If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

11/16/2012

19

Kruskal's pseudo code void Graph::kruskal(){ int edgesAccepted = 0: DisjSet s(NUM_VERTICES); |E| heap ops while (edgesAccepted < NUM_VERTICES - 1){ e = smallest weight edge not deleted yet; // edge e = (u, v) uset = s.find(u); vset = s.find(v); 2|E| finds if (uset != vset){ edgesAccepted++; s.unionSets(uset, vset); _ |V| unions } 11/16/2012

Find MST using Kruskal's Find MST using Kruskal's B 2 B 2 B 4 9 1 10 2 1 Total Cost: Now find the MST using Prim's method. Under what conditions will these methods give the same result?

Example: Find MST using Kruskal's

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E) 2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

11/16/2012

Example: Find MST using Kruskal's

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

11/16/2012

Example: Find MST using Kruskal's

Edges in sorted order:

1: (A,D), (C,D), (B,E), (D,E)

2: (A,B), (C,F), (A,C)

3: (E,G)

5: (D,G), (B,D) 6: (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

Example: Find MST using Kruskal's

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), **(D,E)**
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

11/16/2012

25

Example: Find MST using Kruskal's

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

11/16/2012

26

Example: Find MST using Kruskal's

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

11/16/2012

Example: Find MST using Kruskal's

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

11/16/2012

Example: Find MST using Kruskal's

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

11/16/2012

Example: Find MST using Kruskal's

Edges in sorted order:

- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose u and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle.
 But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

11/16/2012

31

The inductive proof set-up

Let **F** (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: **F** is a subset of *one or more* MSTs for the graph (Therefore, once **|F|=|V|-1**, we have an MST.)

Proof: By induction on $|\mathbf{F}|$

Base case: |F|=0: The empty set is a subset of all MSTs

Inductive case: |F|=k+1: By induction, before adding the $(k+1)^{th}$ edge (call it e), there was some MST T such that F-{e} \subseteq T ...

11/16/2012

32

Staying a subset of some MST

Claim: **F** is a subset of *one or more* MSTs for the graph

So far: F-{e} ⊆ T:

Two disjoint cases:

- If {e} ⊆ T: Then F ⊆ T and we're done
- Else ${\bf e}$ forms a cycle with some simple path (call it ${\bf p}$) in ${\bf T}$
 - Must be since T is a spanning tree

11/16/2012

Staying a subset of **some** MST

Claim: F is a subset of one or more MSTs for the graph

So far: $F-\{e\} \subseteq T$ and e forms a cycle with p ⊆ T

- There must be an edge e2 on p such that e2 is not in F - Else Kruskal would not have added e

• Claim: e2.weight == e.weight

11/16/2012

34

Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph

So far: F-{e} ⊆ T e forms a cycle with p ⊆ T e2 on p is not in F

- Claim: e2.weight == e.weight
 - If e2.weight > e.weight, then T is not an MST because
 T-{e2}+{e} is a spanning tree with lower cost: contradiction
 - If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and $F-\{e\} \subseteq T$. But e2 is not in F: contradiction

11/16/2012

Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph

So far: F-{e} ⊆ T e forms a cycle with p ⊆ T e2 on p is not in F e2.weight == e.weight

- Claim: T-{e2}+{e} is an MST
 - It's a spanning tree because **p-{e2}+{e}** connects the same
 - It's minimal because its cost equals cost of T, an MST
- Since F ⊆ T-{e2}+{e}, F is a subset of one or more MSTs Done.