
\qquad
\qquad
\qquad
\qquad
\qquad

Minimum Spanning Trees

Given an undirected graph $G=(V, E)$, find a graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that:

- E^{\prime} is a subset of E \qquad
- $\left|\mathrm{E}^{\prime}\right|=|\mathrm{V}|-1$
G^{\prime} 'is a minimum
spanning tree.
$-\sum_{(u, v) \in E^{\prime}} \mathrm{C}_{u v} \quad$ is minimal
Applications:
- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time \qquad
11/16/2012 ${ }^{2}$ \qquad

Two Different Approaches

Prim's Algorithm Almost identical to Dijkstra's

Kruskals's Algorithm Completely different!
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Prim's algorithm

Idea: Grow a tree by picking a vertex from the unknown set that has the smallest cost. Here cost = cost of the edge that connects that vertex to the known set. Pick the vertex with the smallest cost that connects "known" to "unknown."
A node-based greedy algorithm Builds MST by greedily adding nodes

\qquad
\qquad
\qquad

11/16/2012 \qquad

Prim's Algorithm vs. Dijkstra's

\qquad

Recall: \qquad

Dijkstra picked the unknown vertex with smallest cost where cost = distance to the source.
Prim's pick the unknown vertex with smallest cost where cost = distance from this vertex to the known set (in other words the cost of the smallest edge connecting this vertex to the known set)

- Otherwise identical \qquad
\qquad

Prim's Algorithm for MST

\qquad

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}. known $=$ false
2. Choose any node v. (this is like your "start" vertex in Dijkstra)
a) Mark \mathbf{v} as known
b) For each edge (\mathbf{v}, \mathbf{u}) with weight \mathbf{w} : set u.cost=w and u.prev=v
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark \mathbf{v} as known and add ($\mathbf{v}, \mathrm{v} \cdot \mathrm{prev}$) to output (the MST)
c) For each edge (v, u) with weight w,
if(w < u.cost) \{
u.cost $=w$;
u.prev = v;
\}
11/16/2012

Example: Find MST using Prim's \qquad

vertex	known?	cost	prev
A		$? ?$	
B		$? ?$	
C		$? ?$	
D		$? ?$	
E		$? ?$	
F		$? ?$	
G		$? ?$	

11/16/2012
8 \qquad

Example: Find MST using Prim's \qquad

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		2	A
D		1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

\qquad

Example: Find MST using Prim's

\qquad

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		1	D
D	Y	1	A
E		1	D
F		6	D
G		5	D

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Find MST using Prim's \qquad
\qquad

vertex	known?	cost	prev
A	Y	0	
B		2	A
C	Y	1	D
D	Y	1	A
E		1	D
F		2	C
G		5	D

11/16/2012
11 \qquad

Example: Find MST using Prim's

\qquad

vertex	known?	cost	prev
A	Y	0	
B		1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Find MST using Prim's

\qquad

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

11/16/2012
13
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Find MST using Prim's \qquad

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G		3	E

11/16/2012
14 \qquad

Example: Find MST using Prim's \qquad

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G	Y	3	E

\qquad

Prim's Analysis

\qquad

- Correctness ?? \qquad
- A bit tricky
- Intuitively similar to Dijkstra
- Might return to this time permitting (unlikely) \qquad
- Run-time
- Same as Dijkstra
- $O(|\mathbf{E}| \log |\mathbf{V}|)$ using a priority queue
\qquad

Kruskal's MST Algorithm

\qquad
\qquad

Kruskal's Algorithm for MST

An edge-based greedy algorithm Builds MST by greedily adding edges

1. Initialize with

- empty MST
- all vertices marked unconnected
- all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u, v) and mark it
b. If u and v are not already connected, add (u, v) to the MST and mark u and v as connected to each other

Kruskal's pseudo code

void Graph::kruskal() i
int edgesAccepted $=0$;
DisjSet s(NUM_VERTICES);
$|\mathbb{E}|$ heap ops
\qquad
while (edgesAccepted < NUM_VERTICES - 1) $1 /$
$e=$ smallest weight edge not deleted yet;
// edge e = (u, v)
uset $=\mathrm{s} . \mathrm{find}(\mathrm{u}) ; \longleftarrow 2|\mathbf{E}|$ finds
vset $=\mathbf{s}$. find(v);
if (uset ! = vset) 1 edgesAccepted++; s.unionSets (uset, vset) ; $\quad \mid$ |V| unions
)
3

\qquad

Now find the MST using Prim's method.
Under what conditions will these methods give the same result?

Example: Find MST using Kruskal's

\qquad

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
\qquad
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D, G), (B, D)
6: (D,F)
10: (F,G)
\qquad
\qquad

Output:
\qquad

Note: At each step, the union/find sets are the trees in the forest \qquad
\qquad

Example: Find MST using Kruskal's \qquad

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E) \qquad
2: (A, B), (C,F), (A,C)
3: (E, G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)
\qquad
\qquad

Output: (A,D)
\qquad

Note: At each step, the union/find sets are the trees in the forest \qquad

11/16/2012
23 \qquad

Example: Find MST using Kruskal's

\qquad
Edges in sorted order:
$1:(\mathrm{A}, \mathrm{D}),(\mathrm{C}, \mathrm{D}),(\mathrm{B}, \mathrm{E}),(\mathrm{D}, \mathrm{E})$
\qquad
\qquad
6: (D,F)
10: (F,G) \qquad

Output: (A,D), (C,D) \qquad

Note: At each step, the union/find sets are the trees in the forest \qquad

Example: Find MST using Kruskal's

\qquad

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
\qquad
2: (A,B), (C,F), (A,C)
3: (E, G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)
\qquad
\qquad
\qquad
\qquad
\qquad
11/16/2012

Example: Find MST using Kruskal's

\qquad

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E) \qquad
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)
\qquad
\qquad

Output: (A,D), (C,D), (B,E), (D,E)
Note: At each step, the union/find sets are the trees in the forest \qquad

11/16/2012
26

Example: Find MST using Kruskal's

\qquad

\qquad
\qquad
\qquad

Output: (A,D), (C,D), (B,E), (D,E) \qquad

Note: At each step, the union/find sets are the trees in the forest \qquad

Example: Find MST using Kruskal's

\qquad

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Example: Find MST using Kruskal's \qquad

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E) \qquad
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F, G)
\qquad
\qquad
\qquad
Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest \qquad

11/16/2012
29

Example: Find MST using Kruskal's

\qquad

\qquad
\qquad
\qquad

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest \qquad

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose \mathbf{u} and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost..

The inductive proof set-up

Let \mathbf{F} (stands for "forest") be the set of edges Kruskal has added at some point during its execution.

Claim: \mathbf{F} is a subset of one or more MSTs for the graph \qquad
(Therefore, once $|\mathbf{F}|=|\mathbf{V}|-\mathbf{1}$, we have an MST.)

Proof: By induction on $|\mathbf{F}|$
\qquad

Base case: $|\mathbf{F}|=\mathbf{0}$: The empty set is a subset of all MSTs
Inductive case: $|\mathbf{F}|=\mathbf{k}+\mathbf{1}$: By induction, before adding the $(\mathbf{k}+1)^{\text {th }}$ edge (call it \mathbf{e}), there was some MST \mathbf{T} such that \mathbf{F} - $\{\mathbf{e}\} \subseteq \mathbf{T}$...

Staying a subset of some MST

\qquad

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $F-\{e\} \subseteq T$

\qquad
\qquad
\qquad
Two disjoint cases:

- If $\{\mathrm{e}\} \subseteq \mathrm{T}$: Then $\mathrm{F} \subseteq T$ and we're done
- Else \mathbf{e} forms a cycle with some simple path (call it \mathbf{p}) in \mathbf{T}
\qquad
- Must be since T is a spanning tree

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $F-\{e\} \subseteq T$ and e forms a cycle with $\mathbf{p} \subseteq T$

\qquad
\qquad
\qquad

- There must be an edge $\mathbf{e} \mathbf{2}$ on \mathbf{p} such that $\mathbf{e} \mathbf{2}$ is not in \mathbf{F}
- Else Kruskal would not have added e \qquad
- Claim: e2.weight == e.weight

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $\quad \mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$
e forms a cycle with $\mathbf{p} \subseteq T$
e2 on \mathbf{p} is not in F

- Claim: e2.weight $==$ e.weight
- If e2.weight > e.weight, then T is not an MST because $\mathrm{T}-\{\mathrm{e} 2\}+\{\mathrm{e}\}$ is a spanning tree with lower cost: contradiction \qquad
- If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and $\mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$. But e 2 is not in F : contradiction
\qquad

Staying a subset of some MST

\qquad

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $\quad F-\{ \} \subseteq T$
e forms a cycle with $\mathbf{p} \subseteq T$
e2 on \mathbf{p} is not in F
e2.weight $==$ e.weight

\qquad
\qquad
\qquad

- Claim: T-\{e2\}+\{e\} is an MST
- It's a spanning tree because \mathbf{p}-\{e2\}+\{e\} connects the same \qquad nodes as \mathbf{p}
- It's minimal because its cost equals cost of T, an MST
- Since $\mathrm{F} \subseteq T-\{\mathrm{e} 2\}+\{\mathrm{e}\}$, F is a subset of one or more MSTs \qquad Done.

11/16/2012

