

Introduction to sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
 - But often we know we want "all the data items" in some order – Anvone can sort, but a computer can sort faster
 - Anyone can sort, but a computer can sort fas
 Very common to need data sorted somehow
 - Alphabetical list of people
 - Apprabetical list of people
 Population list of countries

 - Search engine results by relevance
 ...
- Different algorithms have different asymptotic and constantfactor trade-offs

4

No single 'best' sort for all scenariosKnowing one way to sort just isn't enough

11/19/2012

More reasons to sort

General technique in computing: *Preprocess* (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can

- Find the ${\bf k}^{\text{th}}$ largest in constant time for any ${\bf k}$
- Perform binary search to find an element in logarithmic time

Whether the performance of the preprocessing matters depends on

- How often the data will change
- How much data there is

11/19/2012

The main problem, stated carefully

For now we will assume we have *n* comparable elements in an array and we want to rearrange them to be in increasing order Input:

- An array A of data records
- A key value in each data record
- A comparison function (consistent and total)
- A comparison function (consistent and total)
 Given keys a & b, what is their relative ordering? <, =, >?
- Ex: keys that implement Comparable or have a Comparator that can handle them

6

Effect:

- Reorganize the elements of A such that for any i and j,
- if i < j then A[i] ≤ A[j] - Usually unspoken assumption: A must have all the same data it started with
- Usually unspoken assumption: A must have all the same data it started with
 Could also sort in reverse order, of course
- An algorithm doing this is a comparison sort

Variations on the basic problem

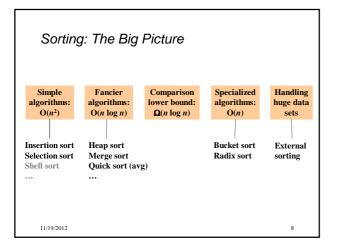
- 1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn't do so)
- 2. Maybe in the case of ties we should preserve the original ordering
 - Sorts that do this naturally are called stable sorts
 One way to sort twice, Ex: Sort movies by year, then for ties,
- alphabetically 3. Maybe we must not use more than *O*(1) "auxiliary space"
 - Sorts meeting this requirement are called 'in-place' sorts
 - Not allowed to allocate extra array (at least not with size O(n)), but can allocate O(1) # of variables
 - All work done by swapping around in the array
- 4. Maybe we can do more with elements than just compare
 - Comparison sorts assume we work using a binary 'compare' operator

7

9

- In special cases we can sometimes get faster algorithmsMaybe we have too much data to fit in memory
 - Use an "external sorting" algorithm

11/19/2012



Insertion Sort

- Idea: At the ${\bf k}^{th}$ step put the ${\bf k}^{th}$ input element in the correct place among the first ${\bf k}$ elements
- "Loop invariant": when loop index is ${\tt i}, {\tt first} \; {\tt i} \; {\tt elements} \; {\tt are} \; {\tt sorted}$
- · Alternate way of saying this:
 - Sort first two elements
 - Now insert 3rd element in order
 - Now insert 4th element in order
- ...

Time?
 Best-case _____ Worst-case _____ "Average" case _____

```
11/19/2012
```

Insertion Sort Idea: At the kth step put the k

- Idea: At the ${\bf k}^{th}$ step put the ${\bf k}^{th}$ input element in the correct place among the first ${\bf k}$ elements
- "Loop invariant": when loop index is $\mathtt{i}, \mathtt{first}\, \mathtt{i}$ elements are sorted
- · Alternate way of saying this:
 - Sort first two elements
 - Now insert 3^{rd} element in order
 - Now insert 4th element in order
 - ..
- Time?
 - ?
 - Best-case
 O(n)
 Worst-case
 O(n²)
 "Average" case
 O(n²)

 start sorted
 start reverse sorted
 (see text)

10

12

11/19/2012

Selection sort Idea: At the kth step, find the smallest element among the not-yet-sorted elements and put it at position k "Loop invariant": when loop index is 1, first 1 elements are the 1 smallest elements in sorted order Alternate way of saying this: Find smallest element, put it 1st Find next smallest element, put it 2nd Find next smallest element, put it 3rd ... Time? Morst-case "Average" case

Selection sort

- Idea: At the ${\bf k}^{th}$ step, find the smallest element among the not-yet-sorted elements and put it at position k
- "Loop invariant": when loop index is i, first i elements are the i smallest elements in sorted order
- Alternate way of saying this:
 - Find smallest element, put it 1st
 - Find next smallest element, put it 2nd
 - Find next smallest element, put it $3^{\rm rd}$
 - ...
- Time?
 - Best-case $O(n^2)$ Worst-case $O(n^2)$ "Average" case $O(n^2)$ Always T(1) = 1 and T(n) = n + T(n-1)

```
11/19/2012
```

Insertion Sort vs. Selection Sort

- They are different algorithms
- They solve the same problem
- They have the same worst-case and average-case asymptotic complexity
 - Insertion sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for larger arrays that are not already almost sorted

13

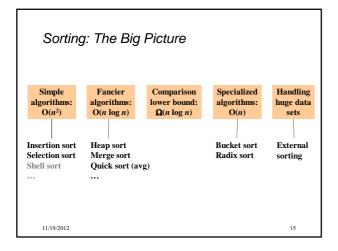
14

- Small arrays may do well with Insertion sort

11/19/2012

Aside: We won't cover Bubble Sort

- It doesn't have good asymptotic complexity: $O(n^2)$
- · It's not particularly efficient with respect to common factors
- Basically, almost everything it is good at, some other algorithm is at least as good at
- Some people seem to teach it just because someone taught it to them
- For fun see: "Bubble Sort: An Archaeological Algorithmic Analysis", Owen Astrachan, SIGCSE 2003



Heap sort

- Sorting with a heap is easy:

 insert each arr[i], better yet buildHeap
 for(i=0; i < arr.length; i++)
 arr[i] = deleteMin();
- Worst-case running time:
- We have the array-to-sort and the heap

 So this is not an in-place sort
 There's a trick to make it in-place...

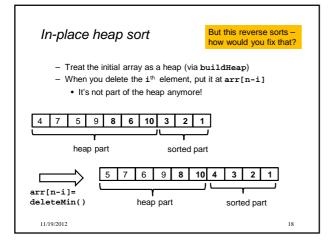
11/19/2012

Heap sort

- Sorting with a heap is easy:
 insert each arr[i], better yet buildHeap
 for(i=0; i < arr.length; i++)
 arr[i] = deleteMin();</pre>
- Worst-case running time: $O(n \log n)$ why?
- We have the array-to-sort and the heap - So this is not an in-place sort
 - There's a trick to make it in-place...

11/19/2012

17



"AVL sort" • How? 11/19/2012 19

"AVL sort"

- We can also use a balanced tree to:
 - insert each element: total time O(n log n)
 - Repeatedly delete the min value: total time O(n log n) - OR: Do an inorder traversal O(n)
- But this cannot be made in-place and has worse constant factors than heap sort
 - heap sort is better
 - both are $O(n \log n)$ in worst, best, and average case
 - neither parallelizes well
- Don't even think about trying to sort with a hash table...

20

21

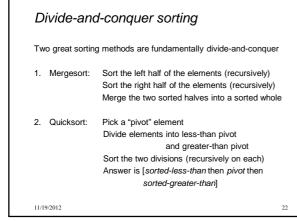
11/19/2012

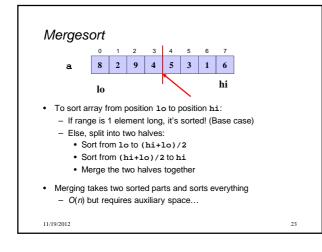
Divide and conquer

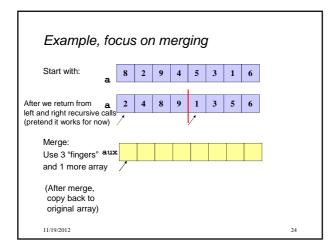
Very important technique in algorithm design

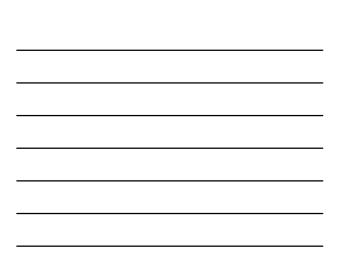
- 1. Divide problem into smaller parts
- 2. Solve the parts independently
 - Think recursion
 - Or potential parallelism
- 3. Combine solution of parts to produce overall solution

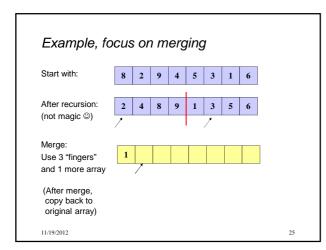
Ex: Sort each half of the array, combine together; to sort each half, split into halves...

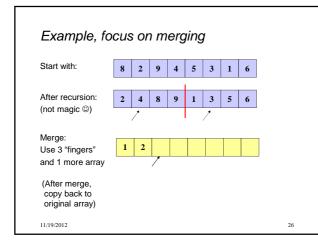




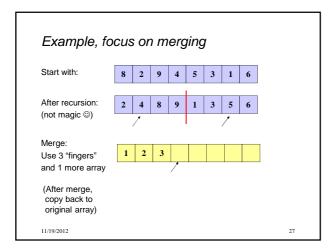


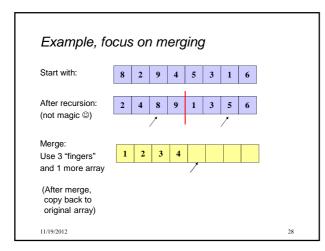


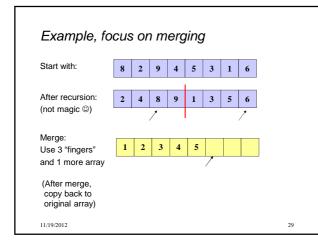


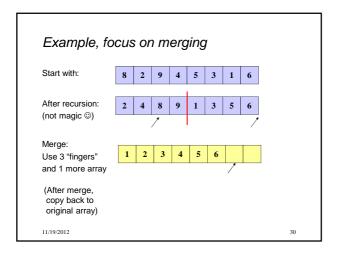


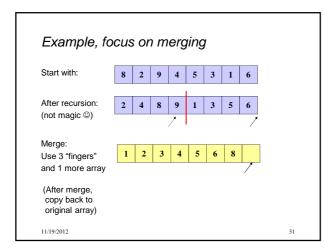


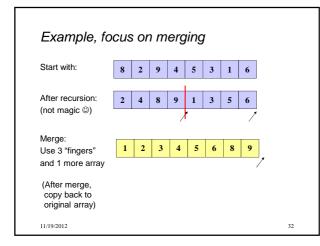


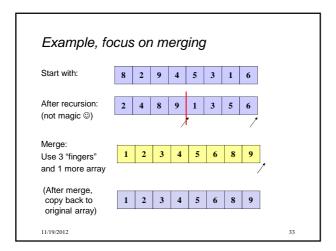


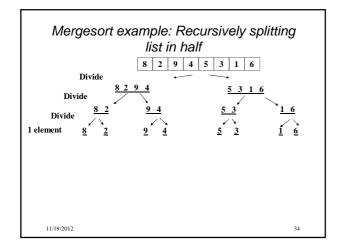


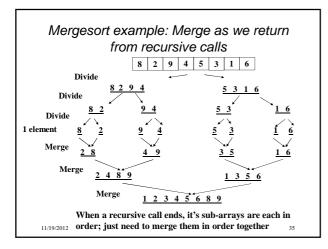


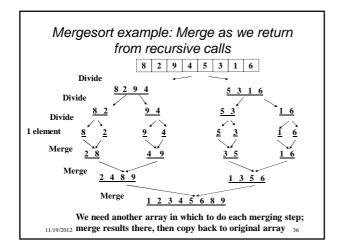


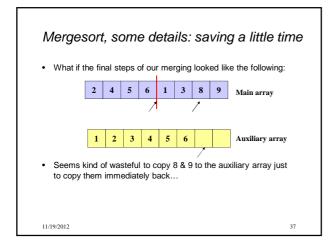


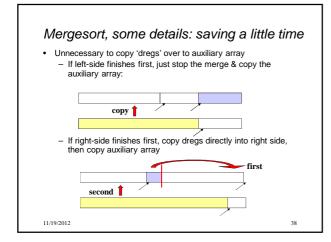












Some details: saving space / copying

Simplest / worst approach:

Use a new auxiliary array of size (hi-lo) for every merge Returning from a recursive call? Allocate a new array!

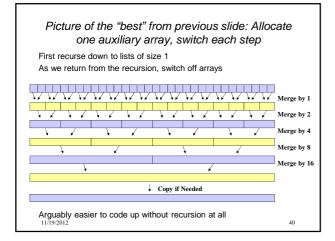
Better:

Reuse same auxiliary array of size ${\bf n}$ for every merging stage Allocate auxiliary array at beginning, use throughout

Best (but a little tricky):

Don't copy back – at 2nd, 4th, 6th, ... merging stages, use the original array as the auxiliary array and vice-versa – Need one copy at end if number of stages is odd

```
11/19/2012
```



Linked lists and big data

We defined the sorting problem as over an array, but sometimes you want to sort linked lists

One approach:

- Convert to array: O(n)
- Sort: *O*(*n* log *n*)
- Convert back to list: O(n)
- Or: mergesort works very nicely on linked lists directly
 - heapsort and quicksort do not
 - insertion sort and selection sort do but they're slower
- Mergesort is also the sort of choice for external sorting

Linear merges minimize disk accesses

11/19/2012

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort n elements, we:

- Return immediately if n=1
- Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation?

		20	

42

Mergesort Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

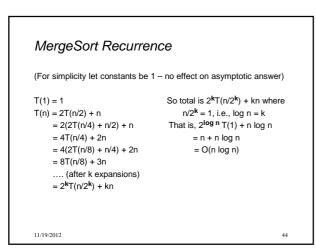
To sort *n* elements, we:

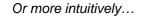
- Return immediately if n=1
- Else do 2 subproblems of size n/2 and then an O(n) merge

43

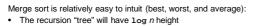
Recurrence relation: $T(1) = c_1$ $T(n) = 2T(n/2) + c_2n$

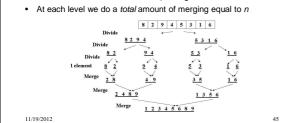
11/19/2012





This recurrence comes up often enough you should just "know" it's $O(n \log n)$





Quicksort

- Also uses divide-and-conquer
 - Recursively chop into two pieces
 - But, instead of doing all the work as we merge together, we'll do all the work as we recursively split into two pieces
 - Also unlike MergeSort, does not need auxiliary space
- $O(n \log n)$ on average \odot , but $O(n^2)$ worst-case \otimes
 - MergeSort is always O(nlogn)
 - So why use QuickSort?
- Can be faster than mergesort
 - Often believed to be faster
 - Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

46

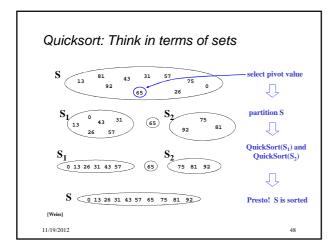
47

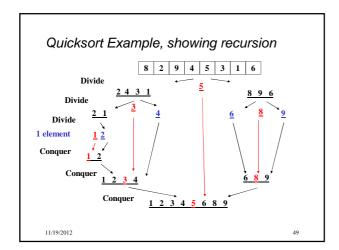
11/19/2012

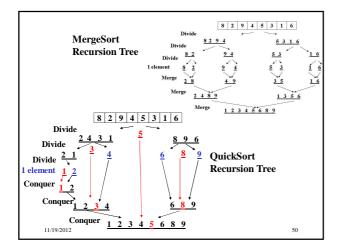
Quicksort overview

- 1. Pick a pivot element
 - Hopefully an element ~median
 Cood QuickSort parformance depende a
 - Good QuickSort performance depends on good choice of pivot; we'll see why later, and talk about good pivot selection later
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot
- 3. Recursively sort A and C
- 4. The answer is, "as simple as A, B, C"

(Alas, there are some details lurking in this algorithm)





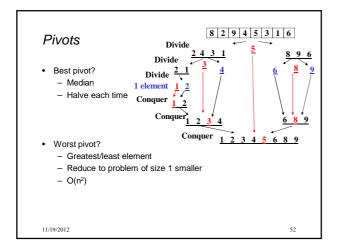


Quicksort Details

We haven't explained:

- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
 - In linear time
 - In place

11/19/2012



Quicksort: Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)...

- Pick arr[lo] Of arr[hi-1]
 - Fast, but worst-case is (mostly) sorted input
- Pick random element in the range
 Does as well as any technique, but (pseudo)random number
 - generation can be slow
 - (Still probably the most elegant approach)
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 Common heuristic that tends to work well

11/19/2012

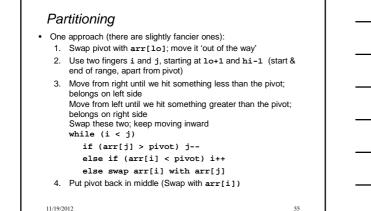
Partitioning

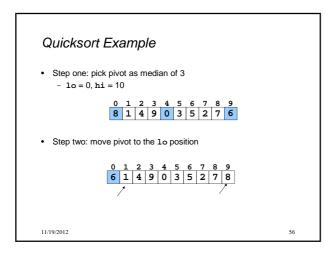
- That is, given 8, 4, 2, 9, 3, 5, 7 and pivot 5
 Getting into left half & right half (based on pivot)
- Conceptually simple, but hardest part to code up correctly
 After picking pivot, need to partition
 - Ideally in linear time
 - Ideally in place

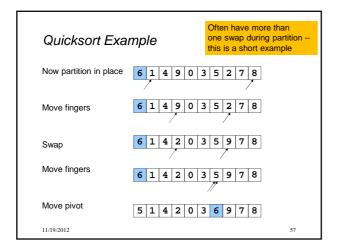
Ideas?

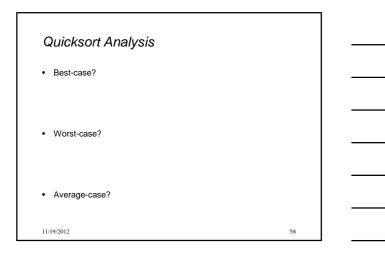
11/19/2012

54









Quicksort Analysis

- Best-case: Pivot is always the median
 T(0)=T(1)=1
 T(n)=2T(n/2) + n -- linear-time partition
 Same recurrence as mergesort: O(n log n)
- Worst-case: Pivot is always smallest or largest element T(0)=T(1)=1T(n)=1T(n-1) + nBasically same recurrence as selection sort: $O(n^2)$
- Average-case (e.g., with random pivot)
 O(n log n), not responsible for proof (in text)

11/19/2012

Quicksort Cutoffs

- For small *n*, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for large n
 - Also, recursive calls add a lot of overhead for small n
- Common engineering technique: switch to a different algorithm for subproblems below a cutoff
- Reasonable rule of thumb: use insertion sort for n < 10
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - switch to sequential algorithm
 - None of this affects asymptotic complexity

```
11/19/2012
```