Comparison Sorting

CSE 373
Data Structures \& Algorithms
Ruth Anderson

Today's Outline

- Admin:
- HW \#5 - Graphs, due Thurs Nov 29 at 11pm
- HW \#6 - last homework, on sorting, individual project, no Java programming, due Thurs Dec 6.
- Sorting
- Comparison Sorting

Introduction to sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
- But often we know we want "all the data items" in some order
- Anyone can sort, but a computer can sort faster
- Very common to need data sorted somehow
- Alphabetical list of people
- Population list of countries
- Search engine results by relevance
- Different algorithms have different asymptotic and constantfactor trade-offs
- No single 'best' sort for all scenarios
- Knowing one way to sort just isn't enough

11/19/2012

More reasons to sort

General technique in computing:
Preprocess (e.g. sort) data to make subsequent operations faster

Example: Sort the data so that you can

- Find the $\mathbf{k}^{\text {th }}$ largest in constant time for any \mathbf{k}
- Perform binary search to find an element in logarithmic time

Whether the performance of the preprocessing matters depends on

- How often the data will change
- How much data there is

The main problem, stated carefully

For now we will assume we have n comparable elements in an array and we want to rearrange them to be in increasing order Input:

- An array A of data records
- A key value in each data record
- A comparison function (consistent and total)
- Given keys a \& b, what is their relative ordering? <, =, >?
- Ex: keys that implement Comparable or have a Comparator that can handle them
Effect:
- Reorganize the elements of \mathbf{A} such that for any i and j if $i<j$ then $A[i] \leq A[j]$
- Usually unspoken assumption: A must have all the same data it started with
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

1/19/2012

Variations on the basic problem

1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn't do so)
2. Maybe in the case of ties we should preserve the original ordering

- Sorts that do this naturally are called stable sorts
- One way to sort twice, Ex: Sort movies by year, then for ties, alphabetically

3. Maybe we must not use more than $O(1)$ "auxiliary space"

- Sorts meeting this requirement are called 'in-place' sorts
- Not allowed to allocate extra array (at least not with size $O(n)$), but can allocate O(1) \# of variables
- All work done by swapping around in the array

4. Maybe we can do more with elements than just compare

- Comparison sorts assume we work using a binary 'compare' operator
- In special cases we can sometimes get faster algorithms

5. Maybe we have too much data to fit in memory

- Use an "external sorting" algorithm

11/19/2012

Sorting: The Big Picture				
Simple algorithms: $\mathbf{O}\left(n^{2}\right)$	Fancier algorithms: $O(n \log n)$	Comparison lower bound: $\Omega(n \log n)$	Specialized algorithms: $\mathbf{O}(n)$	Handling huge data sets
Insertion sort Selection sort Shell sort	Heap sort Merge sort Quick sort ...		Bucket sort Radix sort	External sorting
11/19/2012				8

Insertion Sort

- Idea: At the $\mathbf{k}^{\text {th }}$ step put the $\mathbf{k}^{\text {th }}$ input element in the correct place

Insertion Sort

- Idea: At the $\mathbf{k}^{\text {th }}$ step put the $\mathbf{k}^{\text {th }}$ input element in the correct place among the first \mathbf{k} elements
- "Loop invariant": when loop index is \mathbf{i}, first \mathbf{i} elements are sorted
- "Loop invariant": when loop index is \mathbf{i}, first \mathbf{i} elements are sorted
- Alternate way of saying this:
- Sort first two elements
- Now insert $3^{\text {rd }}$ element in order
- Now insert $4^{\text {th }}$ element in order

Time?
Best-case $O(n)$ Worst-case $O\left(n^{2}\right)$ "Average" case $O\left(n^{2}\right)$ start sorted start reverse sorted (see text)

Selection sort

- Idea: At the $\mathbf{k}^{\text {th }}$ step, find the smallest element among the not-yet-

Selection sort

 sorted elements and put it at position k- "Loop invariant": when loop index is \mathbf{i}, first \mathbf{i} elements are the \mathbf{i} smallest elements in sorted order
- Alternate way of saying this:
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
- Find next smallest element, put it $3^{\text {rd }}$
- ...
- Time?

Best-case \qquad Worst-case \qquad "Average" case \qquad 11/19/2012 11

- Idea: At the $\mathbf{k}^{\text {th }}$ step, find the smallest element among the not-yetsorted elements and put it at position k
- "Loop invariant": when loop index is \mathbf{i}, first \mathbf{i} elements are the \mathbf{i} smallest elements in sorted order
- Alternate way of saying this:
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
- Find next smallest element, put it $3^{\text {rd }}$
- ...
- Time?

Best-case $O\left(n^{2}\right)$ Worst-case $O\left(n^{2}\right) \quad$ "Average" case $O\left(n^{2}\right)$ Always $\mathrm{T}(1)=1$ and $\mathrm{T}(\mathrm{n})=\mathrm{n}+\mathrm{T}(\mathrm{n}-1)$

11/19/2012

Insertion Sort vs. Selection Sort

- They are different algorithms
- They solve the same problem
- They have the same worst-case and average-case asymptotic complexity
- Insertion sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for larger arrays that are not already almost sorted
- Small arrays may do well with Insertion sort

Aside: We won't cover Bubble Sort

- It doesn't have good asymptotic complexity: $O\left(n^{2}\right)$
- It's not particularly efficient with respect to common factors
- Basically, almost everything it is good at, some other algorithm is at least as good at
- Some people seem to teach it just because someone taught it to them
. For fun see: "Bubble Sort: An Archaeological Algorithmic Analysis", Owen Astrachan, SIGCSE 2003

Heap sort

- Sorting with a heap is easy:
- insert each arr[i], better yet buildHeap
- for (i=0; i < arr.length; i++) $\operatorname{arr}[i]=$ deleteMin();
- Worst-case running time:
- We have the array-to-sort and the heap
- So this is not an in-place sort
- There's a trick to make it in-place...

11/19/2012 15

Heap sort

- Sorting with a heap is easy:
- insert each arr[i], better yet buildHeap
- for (i=0; i < arr.length; i++)
arr[i] = deleteMin();
- Worst-case running time: $O(n \log n)$ why?
- We have the array-to-sort and the heap
- So this is not an in-place sort
- There's a trick to make it in-place...

In-place heap sort

But this reverse sorts -
 how would you fix that?

Treat the initial array as a heap (via buildHeap)

- When you delete the $\mathbf{i}^{\text {th }}$ element, put it at arr [n-i]
- It's not part of the heap anymore!

$\operatorname{arr}[n-i]=$ deleteMin()

11/19/2012

"AVL sort"

- How?

"AVL sort"

- We can also use a balanced tree to:
- insert each element: total time $O(n \log n)$
- Repeatedly delete the min value: total time $O(n \log n)$
- OR: Do an inorder traversal $O(n)$
- But this cannot be made in-place and has worse constant factors than heap sort
- heap sort is better
- both are $O(n \log n)$ in worst, best, and average case
- neither parallelizes well
- Don't even think about trying to sort with a hash table...

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts
2. Solve the parts independently

- Think recursion
- Or potential parallelism

3. Combine solution of parts to produce overall solution

Ex: Sort each half of the array, combine together; to sort each half, split into halves..

11/19/2012 21

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively) Sort the right half of the elements (recursively) Merge the two sorted halves into a sorted whole
2. Quicksort: Pick a "pivot" element

Divide elements into less-than pivot and greater-than pivot Sort the two divisions (recursively on each)
Answer is [sorted-less-than then pivot then sorted-greater-than]

11/19/2012

Mergesort

- To sort array from position lo to position hi:
- If range is 1 element long, it's sorted! (Base case)
- Else, split into two halves:
- Sort from lo to (hi+lo) /2
- Sort from (hi+lo)/2 to hi
- Merge the two halves together
- Merging takes two sorted parts and sorts everything
- $O(n)$ but requires auxiliary space..

Example, focus on merging

Example, focus on merging

Start with:

$\begin{array}{l}\text { After recursion: } \\ \text { (not magic }(-)\end{array}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$

Merge:
Use 3 "fingers"

and 1 more array
(After merge,
copy back to
original array)

11/19/2012

Example, focus on merging

```
Start with:
```


Merge:

```
Use 3 "fingers"
and 1 more array
```



```
(After merge,
copy back to
original array)
11/19/2012
``` 27

\section*{Example, focus on merging}

Start with:

Merge:
Use 3 "fingers"
and 1 more array

(After merge,
copy back to
original array)

11/19/2012

\section*{Example, focus on merging}

\section*{Merge:}

Use 3 "fingers"
and 1 more array

(After merge,
copy back to original array)

11/19/2012

Example, focus on merging

Merge:
Use 3 "fingers" and 1 more array

(After merge,
copy back to
original array)
11/19/2012

\section*{Example, focus on merging}

Start with:

After recursion: (not magic ©)

Merge:
Use 3 "fingers"

(After merge,
copy back to
original array)

11/19/2012

Example, focus on merging

(After merge,
copy back to
original array)

11/19/2012

Example, focus on merging

Mergesort example: Recursively splitting

11/19/2012

\section*{Example, focus on merging}

\(\qquad\)

We need another array in which to do each merging step; 11/19/2012 merge results there, then copy back to original array 36

\section*{Mergesort, some details: saving a little time}
- What if the final steps of our merging looked like the following:

- Seems kind of wasteful to copy \(8 \& 9\) to the auxiliary array just to copy them immediately back..

11/19/2012

\section*{Some details: saving space / copying}

Simplest / worst approach:
Use a new auxiliary array of size (hi-10) for every merge
Returning from a recursive call? Allocate a new array!
Better:
Reuse same auxiliary array of size n for every merging stage
Allocate auxiliary array at beginning, use throughout
Best (but a little tricky):
Don't copy back - at \(2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, \ldots\) merging stages, use the original array as the auxiliary array and vice-versa
- Need one copy at end if number of stages is odd

\section*{Mergesort, some details: saving a little time}
- Unnecessary to copy 'dregs' over to auxiliary array
- If left-side finishes first, just stop the merge \& copy the auxiliary array:

- If right-side finishes first, copy dregs directly into right side, then copy auxiliary array

11/19/2012

Picture of the "best" from previous slide: Allocate one auxiliary array, switch each step
First recurse down to lists of size 1
As we return from the recursion, switch off arrays

\section*{Linked lists and big data}

We defined the sorting problem as over an array, but sometimes you want to sort linked lists

One approach:
- Convert to array: \(O(n)\)
- Sort: \(O(n \log n)\)
- Convert back to list: \(O(n)\)

Or: mergesort works very nicely on linked lists directly
- heapsort and quicksort do not
- insertion sort and selection sort do but they're slower

Mergesort is also the sort of choice for external sorting
- Linear merges minimize disk accesses

\section*{Mergesort Analysis}

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort \(n\) elements, we:
- Return immediately if \(n=1\)
- Else do 2 subproblems of size \(n / 2\) and then an \(O(n)\) merge

\section*{Recurrence relation:}
\(T(1)=c_{1}\)
\(\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{c}_{2} n\)

\section*{Or more intuitively...}

This recurrence comes up often enough you should just "know" it's \(O(n \log n)\)

Merge sort is relatively easy to intuit (best, worst, and average):
- The recursion "tree" will have \(\log n\) height
- At each level we do a total amount of merging equal to \(n\)

11/19/2012

\section*{MergeSort Recurrence}
(For simplicity let constants be 1 - no effect on asymptotic answer)
\[
T(1)=1
\]
\[
T(n)=2 T(n / 2)+n
\]
\(=2(2 T(n / 4)+n / 2)+n\)
\(=4 \mathrm{~T}(\mathrm{n} / 4)+2 \mathrm{n}\)
\(=4(2 T(n / 8)+n / 4)+2 n\)
\(=8 \mathrm{~T}(\mathrm{n} / 8)+3 \mathrm{n}\)
.... (after \(k\) expansions)
\(=2^{\mathrm{k}}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\mathrm{kn}\)

11/19/2012

\section*{Quicksort}
- Also uses divide-and-conquer
- Recursively chop into two pieces
- But, instead of doing all the work as we merge together, we'll do all the work as we recursively split into two pieces
- Also unlike MergeSort, does not need auxiliary space
- \(O(n \log n)\) on average \()_{-}\), but \(O\left(n^{2}\right)\) worst-case \()^{*}\)
- MergeSort is always O(nlogn)
- So why use QuickSort?
- Can be faster than mergesort
- Often believed to be faster
- Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

11/19/2012

\section*{Quicksort overview}
1. Pick a pivot element
- Hopefully an element ~median

Good QuickSort performance depends on good choice of pivot; we'll see why later, and talk about good pivot selection later
2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C
4. The answer is, "as simple as \(A, B, C\) "
(Alas, there are some details lurking in this algorithm)

\section*{Quicksort: Think in terms of sets}

\section*{Quicksort Details}

We haven't explained:
- How to pick the pivot element
- Any choice is correct: data will end up sorted
- But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
- In linear time
- In place

Pivots
- Best pivot?
- Median
- Halve each time
- Worst pivot?

- Greatest/least element
- Reduce to problem of size 1 smaller
- \(O\left(\mathrm{n}^{2}\right)\)

\section*{Quicksort: Potential pivot rules}

While sorting arr from lo (inclusive) to hi (exclusive)...

\section*{Partitioning}
- That is, given \(8,4,2,9,3,5,7\) and pivot 5
- Getting into left half \& right half (based on pivot)
- Pick arr [lo] or arr [hi-1]
- Fast, but worst-case is (mostly) sorted input
- Pick random element in the range
- Does as well as any technique, but (pseudo)random number generation can be slow
- (Still probably the most elegant approach)
- Median of 3, e.g., arr [10], \(\operatorname{arr}[h i-1], \operatorname{arr}[(h i+10) / 2]\) - Common heuristic that tends to work well

\section*{Partitioning}
- One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]; move it 'out of the way'
2. Use two fingers \(\mathbf{i}\) and \(\mathbf{j}\), starting at \(\mathbf{l o + 1}\) and hi-1 (start \& end of range, apart from pivot)
3. Move from right until we hit something less than the pivot; belongs on left side
Move from left until we hit something greater than the pivot; belongs on right side
Swap these two; keep moving inward
while (i < j)
if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]
4. Put pivot back in middle (Swap with arr[i])

Often have more than one swap during partition this is a short example

Now partition in place

Move fingers \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 1 & 4 & 9 & 0 & 3 & 5 & 2 & 7 & 8 \\
\hline
\end{tabular}

Swap \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 1 & 4 & 2 & 0 & 3 & 5 & 9 & 7 & 8 \\
\hline
\end{tabular}

Move fingers
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 1 & 4 & 2 & 0 & 3 & 5 & 9 & 7 & 8 \\
\hline
\end{tabular}
Move pivot
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline 5 & 1 & 4 & 2 & 0 & 3 & 6 & 9 & 7 & 8 \\
\hline
\end{tabular}
11/19/2012

\section*{Quicksort Example}
- Step one: pick pivot as median of 3
\(-\mathrm{lo}=0, \mathrm{hi}=10\)

- Step two: move pivot to the lo position

11/19/2012

\section*{Quicksort Analysis}
- Best-case?
- Worst-case?
- Average-case?

\section*{Quicksort Analysis}
- Best-case: Pivot is always the median
\(T(0)=T(1)=1\)
\(\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+n \quad-\) linear-time partition
Same recurrence as mergesort: \(O(n \log n)\)
- Worst-case: Pivot is always smallest or largest element
\(\mathrm{T}(0)=\mathrm{T}(1)=1\)
\(\mathrm{T}(n)=1 \mathrm{~T}(n-1)+n\)
Basically same recurrence as selection sort: \(O\left(n^{2}\right)\)
- Average-case (e.g., with random pivot)
\(-\mathrm{O}(n \log n)\), not responsible for proof (in text)

\section*{Quicksort Cutoffs}
- For small \(n\), all that recursion tends to cost more than doing a quadratic sort
- Remember asymptotic complexity is for large \(n\)
- Also, recursive calls add a lot of overhead for small \(n\)
- Common engineering technique: switch to a different algorithm for subproblems below a cutoff
- Reasonable rule of thumb: use insertion sort for \(n<10\)
- Notes:
- Could also use a cutoff for merge sort
- Cutoffs are also the norm with parallel algorithms
- switch to sequential algorithm
- None of this affects asymptotic complexity

\section*{Quicksort Cutoff skeleton}
void quicksort(int[] arr, int lo, int hi) \{ if (hi - lo < CUTOFF)
insertionSort (arr, lo,hi)
else
\}

Notice how this cuts out the vast majority of the recursive calls
- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree```

