2

Today's Outline

- Admin:
 - HW #5 Graphs, due Thurs Nov 29 at 11pm
 - HW #6 last homework, on sorting, individual project, no Java programming, coming soon, due Thurs Dec 6.
- Sorting

03/02/2012

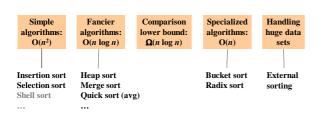
- Comparison Sorting
- Beyond Comparison Sorting

Beyond Comparison Sorting

CSE 373 Data Structures & Algorithms Ruth Anderson

03/02/2012

The Big Picture



03/02/2012

3

1

Comparison Sorting

So far we have only talked about comparison sorting:

Assume we have *n* comparable elements in an array and we want to rearrange them to be in increasing order:

Input:

- An array **A** of data records
- A key value in each data record
- A comparison function (consistent and total)
 - Given keys a & b, what is their relative ordering? <, =, >?

4

- Ex: keys that implement Comparable or have a Comparator that can handle them
- Effect:
 - Reorganize the elements of A such that for any i and j, if i < j then A[i] ≤ A[j]

An algorithm doing this is a comparison sort

03/02/2012

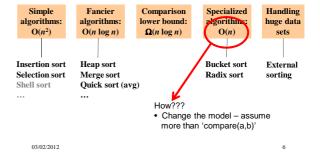
How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or $O(n \log \log n)$??? - Instead: we actually KNOW that this is impossible !!
 - (See end of slide deck for proof)
- In particular, it is impossible assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

5

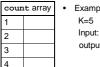
03/02/2012

The Big Picture



BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, don't even need to store anything more than a *count* of how times that bucket has been used
- ass through array of buckets • Output result via linear p



inear pass tritoug	IT allay OF DUCKE
kample:	
K=5	
nput: (5,1,3,4,3,2	,1,1,5,4,5)
output:	

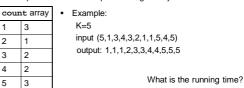
03/02/2012

5

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, don't even need to store anything more than a *count* of how times that bucket has been used

• Output result via linear pass through array of buckets



03/02/2012

1

2

3

4

5

7

Analyzing bucket sort

- Overall: O(n+K)
 - Linear in *n*, but also linear in K
 - $\Omega(\textit{nlog}\ \textit{n})$ lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than number of elements, n
 - We don't spend time doing lots of comparisons of duplicates!

9

11

- Bad when K is much larger than n

 Wasted space; wasted time during final linear O(K) pass
- For data in addition to integer keys, use list at each bucket 03/02/2012

Bucket Sort with Data

- Most real lists aren't just #'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in O(1) (say, keep a pointer to last element)

cour	nt array	•	Example: Movie ratings; scale 1-5;1=bad, 5=excellent
1		→ Rocky V	Input=
2			5: Casablanca
3	_	→ Harry Potter	3: Harry Potter movies
4			5: Star Wars Original Trilogy
5		$ ightarrow$ Casablanca \longrightarrow Star Wars	1: Rocky V

•Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars •This result is 'stable'; Casablanca still before Star Wars 03/02/2012

10

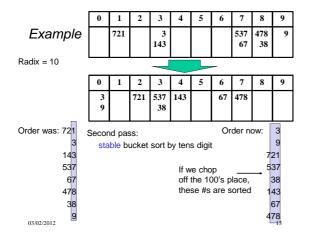
Radix sort

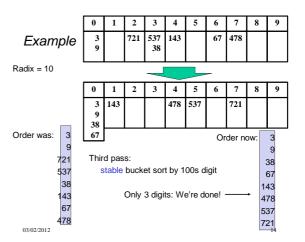
- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

03/02/2012

Example

Radix = 10	0	1	2	3	4	5	6	7	8	9
		721		3 143				537 67	478 38	9
Input: 478 537 9 721 3 38 143 67 03/02/012	1. I		t sort	by or and c	ollect	into a	a list sorted		:	721 3 143 537 67 478 38 9





Student Activity RadixSort

• BucketSort on lsd:	Input:126,	328,	636,	341,	416,	131,	328
BucketSort on Isd:							

 ucketi50	i t on ist								
0	1	2	3	4	5	6	7	8	9
0	1	2	5	-	5	0	,	0	

BucketSort on next-higher digit:

0	1	2	3	4	5	6	7	8	9

BucketSort on msd:

0	1	2	3	4	5	6	7	8	9
03/02	/2012								15

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
- e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
 Number of passes = "Digits": *P*
- e.g. Ages of people: 3; Phone #: 10; Person's name: ?
- Work per pass is 1 bucket sort: _____
- Each pass is a Bucket Sort
- Total work is _____
- We do 'P' passes, each of which is a Bucket Sort

03/02/2012

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P

 Ages of people: 3; Phone #: 10; Person's name: ?
- Work per pass is 1 bucket sort: O(B+n)
 Each pass is a Bucket Sort
- Total work is O(P(B+n))
 - We do 'P' passes, each of which is a Bucket Sort

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Approximate run-time: 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations plus ${\it P}$ and ${\it B}$
- And radix sort can have poor locality properties
 Not really practical for many classes of keys
 - Strings: Lots of buckets

03/02/2012

17

03/02/2012

18

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- MergeSort is the basis of massive sorting
- In-memory sorting of reasonable blocks can be combined with larger mergesorts
- Mergesort can leverage multiple disks

19

03/02/2012

•

External Sorting

· For sorting massive data

External sorting - Basic Idea:

- Text gives some examples

Need sorting algorithms that minimize disk/tape access time

Use the Merge routine from Mergesort to merge runsRepeat until you have only one run (one sorted chunk)

- Load chunk of data into Memory, sort, store this "run" on disk/tape

Features of Sorting Algorithms

In-place

 Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)

Stable

 Items in input with the same value end up in the same order as when they began.

Extra Slides: Proof of Comparison

Sorting Lower Bound

Examples:

- Merge Sort not in place, stable
- Quick Sort in place, not stable

03/02/2012

21

Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
- selection sort, insertion sort (latter linear for mostly-sorted)
 good for "below a cut-off" to help divide-and-conquer sorts
- O(n log n) sorts
 - heap sort, in-place but not stable
 - merge sort, not in place but stable and works as external sort - quick sort, in place but not stable and $O(n^2)$ in worst-case
- often fastest, but depends on costs of comparisons/copies
 Ω (n log n) is worst-case and average lower-bound for sorting by
- comparisons

Non-comparison sorts

- Bucket sort good for small maximum key values
- Radix sort uses fewer buckets and more phases

• Best way to sort? It depends! 03/02/2012

22

How fast can we sort?

- Heapsort & mergesort have O(n log n) worst-case running time
- Quicksort has O(n log n) average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

03/02/2012

23

03/02/2012

A Different View of Sorting

- Assume we have *n* elements to sort
 And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, n=3,

03/02/2012

A Different View of Sorting

- Assume we have *n* elements to sort
 And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?

Representing the Sort Problem
 Can represent this sorting process as a <u>decision tree</u>:
 - Nodes are sets of "remaining possibilities"

- At root, anything is possible; no option eliminated

only one possibility (either a<b or b<a)

- Edges represent comparisons made, and the node resulting

• Ex: Say we need to know whether a<b or b<a; our root for

Note: <u>This tree is not a data structure</u>, it's what our proof uses to represent "the most any algorithm could know"

• A comparison between a & b will lead to a node that contains

from a comparison contains only consistent possibilities

In general, n choices for least element, then n-1 for next, then n-2 for next, ...
 - n(n-1)(n-2)...(2)(1) = n! possible orderings

25

03/02/2012

Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the n! possible answers
 - Starts "knowing nothing", "anything is possible"
 - Gains information with each comparison, eliminating some possibilities
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility

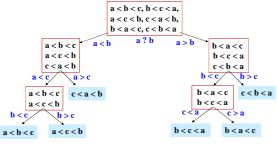
27

03/02/2012

n=2

28

Decision tree for n=3



The leaves contain all the possible orderings of a, b, c

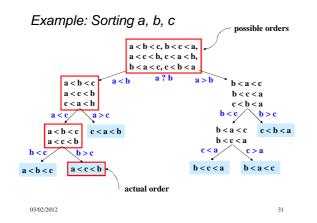
03/02/2012

- What the decision tree tells us
- A binary tree because each comparison has 2 outcomes
 Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn't ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will <u>at best</u> correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree

03/02/2012

29

30



Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with *n*! leaves

- Turns out average-case is same asymptotically
- Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height $\Omega(n \log n)$

- That is, n log n is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won't be faster)
- Factorial function grows very quickly

Then we'll conclude that: (Comparison) Sorting is Ω ($n \log n$)

This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!

Lower bound on Height

- A binary tree of height h has at most how many leaves?
- L ≤

03/02/2012

- A binary tree with L leaves has height at least: h ≥
- The decision tree has how many leaves: ____
- So the decision tree has height:
 - h ≥_

Lower bound on Height

• A binary tree of height h has at most how many leaves?

L ≤ 2^h

- A binary tree with L leaves has height at least: h ≥ log₂ L
- The decision tree has how many leaves: N!
- So the decision tree has height: h ≥ $\log_2 N!$

03/02/2012

34

Lower bound on height

- The height of a binary tree with L leaves is at least log₂ L
- So the height of our decision tree, h: $h \ge \log_2(n!)$
 - $= \log_2 (n^*(n-1)^*(n-2)...(2)(1))$
 - $= \log_2 n + \log_2 (n-1) + ... + \log_2 1$
 - $\geq \log_2 n + \log_2 (n-1) + ... + \log_2 (n/2)$ keep first n/2 terms
 - \geq (n/2) $\log_2(n/2)$
 - $= (n/2)(\log_2 n \log_2 2)$
 - $= (1/2)nlog_2 n (1/2)n$
 - "="**Ω** (*n* log *n*)

33

property of binary trees

definition of factorial property of logarithms each of the n/2 terms left is $\geq \log_2(n/2)$ property of logarithms

arithmetic

35