### Today's Outline

# B-Trees (4.7 in Weiss)

# CSE 373 Data Structures & Algorithms Ruth Anderson

#### • Admin:

- Final Exam Tuesday December 11<sup>th</sup>, topic list posted soon
- HW #6 Sorting, due Thurs December 6 at 11pm

#### • Sorting

- In-place and Stable Sorting

#### • Dictionaries

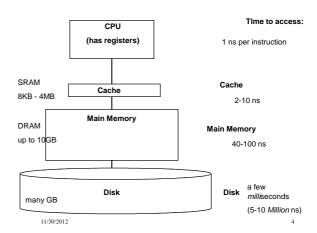
- B-Trees

11/30/2012 1 11/30/2012 2

#### Trees so far

- BST
- AVL

11/30/2012 3



1



- Maximum branching factor of M
- Complete tree has height =

# disk accesses for find:

Runtime of *find*:

11/30/2012

#### Solution: B-Trees

• specialized M-ary search trees

of memory

• Each **node** has (up to) M-1 keys:

– subtree between two keys x and y contains leaves with values v such that 3 7 12 21  $x \le v < y$ · Pick branching factor M such that each node takes one full {page, block}

#### **B-Trees**

What makes them disk-friendly?

- 1. Many keys stored in a node
  - All brought to memory/cache in one access!
- 2. Internal nodes contain only keys;

#### Only leaf nodes contain keys and actual data

- The tree structure can be loaded into memory irrespective of data object size
- Data actually resides in disk

11/30/2012

#### B-Tree: Example

B-Tree with M = 4 (# pointers in internal node) and L = 4(# data items in Leaf) 3 15 20 30 20 25 26 1 2 AB xG 3 5 6 9 15 17 50 60 70 Data objects, that I'll ignore in slides 11/30/2012

Note: All leaves at the same depth!

### B-Tree Properties ‡

- Data is stored at the leaves
- All leaves are at the same depth and contain between  $\lceil L/2 \rceil$  and L data items
- Internal nodes store up to *M-1* keys
- Internal nodes have between  $\lceil M/2 \rceil$  and M children
- Root (special case) has between 2 and M children (or root could be a leaf)

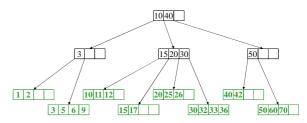
11/30/2012

‡These are technically B+-Trees

#### Example, Again

B-Tree with M = 4

and L = 4



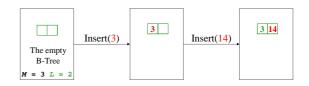
11/30/2012 (Only showing keys, but leaves also have data!)

# B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

- Depth of AVL Tree
- Depth of B+ Tree with M = 128, L = 64

#### Building a B-Tree

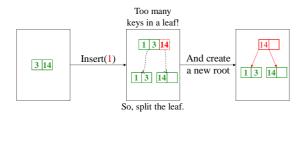


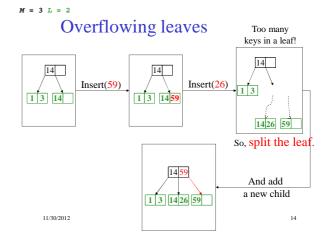
Now, Insert(1)?

11/30/2012 11 11/30/2012 12

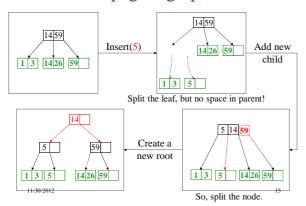
### M = 3 L = 2 Splitting the Root

11/30/2012





## Propagating Splits



### Insertion Algorithm

- 1. Insert the key in its leaf
- 2. If the <u>leaf</u> ends up with L+1 items, **overflow**!
  - Split the leaf into two nodes:
    - original with [(L+1)/2]items
      new one with [(L+1)/2]items
  - Add the new child to the parent
  - If the parent ends up with M+1 items, overflow!
- 3. If an  $\underline{\text{internal node}}$  ends up with M+1 items, overflow!
  - Split the node into two nodes:
    - original with 「(M+1)/2 items
    - new one with  $\lfloor (M+1)/2 \rfloor$  items
  - Add the new child to the parent
    If the parent ends up with M+1
  - items, overflow!

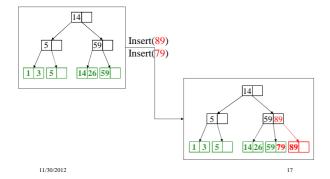
This makes the tree deeper!

11/30/2012

 Split an overflowed <u>root</u> in two and hang the new nodes under a new root

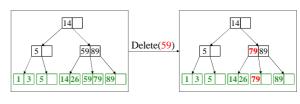
16

# After More Routine Inserts



#### M = 3 L = 2

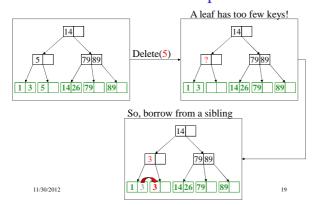
- Deletion
- 1. Delete item from leaf
- 2. Update keys of ancestors if necessary



What could go wrong?

11/30/2012

# Deletion and Adoption



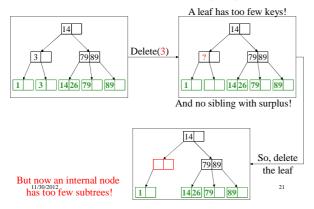
### Does Adoption Always Work?

• What if the sibling doesn't have enough for you to borrow from?

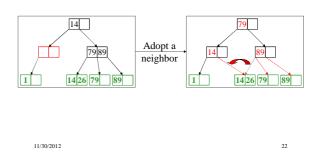
e.g. you have  $\lceil L/2 \rceil$ -1 and sibling has  $\lceil L/2 \rceil$ ?

11/30/2012 20

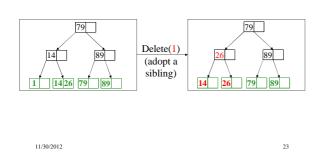
### Deletion and Merging

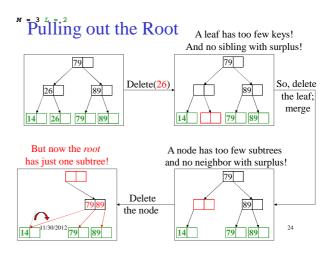


# M = 3 L = 2Deletion with Propagation (More Adoption)

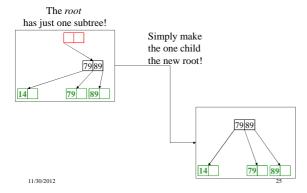


# M = 3 L = 2 A Bit More Adoption





### Pulling out the Root (continued)



#### **Deletion Algorithm**

- 1. Remove the key from its leaf
- 2. If the <u>leaf</u> ends up with fewer than [L/2] items, **underflow!** 
  - Adopt data from a sibling; update the parent
  - If adopting won't work, delete node and merge with neighbor
  - If the parent ends up with fewer than [M/2] items, underflow!

#### Deletion Slide Two

- 3. If an <u>internal</u> node ends up with fewer than [M/2] items, underflow!
  - Adopt from a neighbor; update the parent
  - If adoption won't work, merge with neighbor

11/30/2012

- If the parent ends up with fewer than [M/2] items, underflow!

 If the <u>root</u> ends up with only one child, make the child the new root of the tree This reduces the height of the tree!

27

#### Thinking about B-Trees

- B-Tree **insertion** can cause (expensive) splitting and propagation
- B-Tree **deletion** can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if M and L are large (Why?)
- If  $\mathbf{M} = \mathbf{L} = 128$ , then a B-Tree of height 4 will store at least 30,000,000 items

11/30/2012 28

7

### Tree Names You Might Encounter

#### FYI:

- B-Trees with M = 3, L = x are called 2-3 trees
  - Nodes can have 2 or 3 pointers
- B-Trees with M = 4, L = x are called 2-3-4 trees
  - Nodes can have 2, 3, or 4 pointers

#### Determining M and L for a B-Tree

1 Page on disk = 1 KByte

Key = 8 bytes, Pointer = 4 bytes

Data = 256 bytes per record (includes key)

**M** =

L=

11/30/2012

Student Activity