Asymptotic Analysis II

CSE 373
Data Structures \& Algorithms
Ruth Anderson
Winter 2012

Today's Outline

- Announcements
- Assignment \#1, due Thurs, Jan 12 at 11pm
- Assignment \#2, posted today, due Fri Jan 20 at BEGINNING of lecture
- Algorithm Analysis
- Big-Oh
- Analyzing code

1/13/2012

Ignoring constant factors

- So binary search is $O(\log n)$ and linear search is $O(n)$
- But which is faster?
- Could depend on constant factors:
- How many assignments, additions, etc. for each n

$$
\text { - E.g. } T(n)=5,000,000 n
$$

$$
\text { vs. } T(n)=5 n^{2}
$$

- And could depend on size of n (if n is small then constant additive factors could be more important)
- E.g. $T(n)=5,000,000+\log n$ vs. $T(n)=10+n$
- But there exists some n_{0} such that for all $n>n_{0}$ binary search wins
- Let's play with a couple plots to get some intuition..

1/13/2012
cse 373 12wi - Asymptotic Analysis II 3
\qquad

Linear Search vs. Binary Search

Let's try to "help" linear search:

- Run it on a computer $100 x$ as fast (say 2010 model vs. 1990)
- Use a new compiler/language that is $3 x$ as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600 x as fast as in binary search

For small n , linear search is faster! But eventually binary search wins.

Asymptotic notation

About to show formal definition of Big-O, which amounts to saying:

1. Eliminate low-order terms

Examples

True or false?

1. $4+3 \mathrm{n}$ is $\mathrm{O}(\mathrm{n})$
2. $n+2 \log n$ is $\mathrm{O}(\log n)$
. $\log n+2$ is $\mathrm{O}(1)$
3. n^{50} is $\mathrm{O}\left(1.1^{n}\right)$

Examples:

- $4 n+5$
- $0.5 n \log n+2 n+7$
- $n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$

Examples

True or false?

	$4+3 n$ is $\mathrm{O}(n)$	True
2.	$n+2 \log n$ is $\mathrm{O}(\log n)$	False
3.	$\log n+2$ is $O(1)$	False
4. n^{50} is $\mathrm{O}\left(1.1^{n}\right)$	True	

Big-Oh relates functions

We use O on a function $\mathrm{f}(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$

So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
$-3 n^{2}+17$ and n^{2} have the same asymptotic behavior

Confusingly, we also say/write:
$-\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
$-\left(3 n^{2}+17\right) \in O\left(n^{2}\right)$
$-\left(3 n^{2}+17\right)=O\left(n^{2}\right)$

But we would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$

1/13/2012

Using the definition of Big-Oh (Example 1)

Given: $g(n)=1000 n$ \& $f(n)=n^{2}$
Prove: $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{f}(\mathrm{n})$
Def' n :
$\mathrm{g}(n)$ is in $\mathrm{O}(\mathrm{f}(n))$ iff there exist positive constants c and n_{0} s.t.

- A valid proof is to find valid c \& n_{0} $\mathrm{g}(n) \leq c \mathrm{f}(n) \quad$ for all $\boldsymbol{n} \geq n_{0}$
- Try: $\mathrm{n}_{0}=1000, \mathrm{c}=1$
- Also: $\mathrm{n}_{0}=1, \mathrm{c}=1000$

To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lower-order terms"

- Example: Let $g(n)=3 n^{2}+17$ and $f(n)=n^{2}$
$c=5$ and $n_{0}=10$ is more than good enough

This is "less than or equal to"

- So $3 n^{2}+17$ is also $O\left(n^{5}\right)$ and $O\left(2^{n}\right)$ etc.

1/13/2012

Using the definition of Big-Oh (Example 2)

Given: $g(n)=4 n$ \& $f(n)=n^{2}$ Def'n
$g(n)$ is in $O(f(n))$ iff there exist
Prove: $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{f}(\mathrm{n}))$ positive constants c and n_{0} s.t.

- A valid proof is to find valid c \& $\mathrm{n}_{0} \quad \mathrm{~g}(n) \leq c \mathrm{f}(n) \quad$ for all $\boldsymbol{n} \geq n_{0}$
- When $n=4, g(n)=16 \& f(n)=16$; this is the crossing over point
- So we can choose $n_{0}=4$, and $c=1$
- Note: There are many possible choices: ex: $n_{0}=78$, and $c=42$ works fine

Using the definition of Big-Oh (Example 3)

Given: $g(n)=n^{4}$ \& $f(n)=2^{n}$
Prove: $g(n)$ is in $O(f(n))$
$g(n)$ is in $O(f(n))$ iff there exist

- A valid proof is to find valid c \& n_{0} positive constants c and n_{0} s.t. $g(n) \leq c f(n)$ for all $\boldsymbol{n} \geq n_{0}$
- One possible answer: $n_{0}=20$, and $c=1$

What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:
$g(n)=7 n+5$
$\mathrm{f}(\mathrm{n})=\mathrm{n}$
- These have the same asymptotic behavior (linear), so $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{f}(\mathrm{n})$) even though $\mathrm{g}(\mathrm{n})$ is always larger
- There is no positive n_{0} such that $g(n) \leq f(n)$ for all $n \geq n_{0}$
- The ' c ' in the definition allows for that:
$\mathrm{g}(n) \leq c \mathrm{f}(n) \quad$ for all $n \geq n_{0}$
- To prove $g(n)$ is in $O(f(n))$, have $c=12, n_{0}=1$

More Definitions

- Upper bound: $O(f(n))$ is the set of all functions asymptotically
less than or equal to $f(n)$
- $\mathrm{g}(n)$ is in $O(\mathrm{f}(\mathrm{n}))$ if there exist positive constants c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$
- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
$-\mathrm{g}(\mathrm{n})$ is in $\Omega(\mathrm{f}(\mathrm{n}))$ if there exist positive constants c and n_{0} such that $\mathrm{g}(n) \geq c \mathrm{f}(\mathrm{n})$ for all $n \geq n_{0}$
- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
$-\mathrm{g}(n)$ is in $\theta(\mathrm{f}(\mathrm{n}))$ if both: $\mathrm{g}(n)$ is in $O(\mathrm{f}(\mathrm{n}))$ AND $g(n)$ is in $\Omega(f(n))$

1/13/2012
cse 373 12wi - Asymptotic Analysis II

Big Oh: Common Categories

From fastest to slowest:
$O(1) \quad$ constant (same as $O(k)$ for constant k)
$O(\log n) \quad \log a r i t h m i c\left(\log _{\mathrm{k}} \mathrm{n}, \log \mathrm{n}^{2}\right.$ is $\left.O(\log n)\right)$
$O(n) \quad$ linear
$\mathrm{O}(\mathrm{n} \log n) \quad$ " $n \log n "$
$O\left(n^{2}\right) \quad$ quadratic
$O\left(n^{3}\right) \quad$ cubic
$O\left(n^{k}\right) \quad$ polynomial (where is k is an constant)
$O\left(k^{n}\right) \quad$ exponential (where k is any constant >1)
Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

1/13/2012 cse 373 12wi - Asymptotic Analysis II

Even More Definitions...

$O(\mathrm{f}(\mathrm{n}))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(\mathrm{n})$

- $\mathrm{g}(\mathrm{n})$ is in $O(\mathrm{f}(\mathrm{n}))$ if there exist positive constants c and n_{0} such that
$o(f(n))$ is the set of all functions asymptotically less than $f(n)$
- $\mathrm{g}(n)$ is in $\mathrm{o}(\mathrm{f}(\mathrm{n}))$) if for any positive constant c , there exists a positive constant n_{0} such that
$\mathrm{g}(n)<c \mathrm{f}(\mathrm{n})$ for all $n \geq n_{0}$
$\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
- $\mathrm{g}(\mathrm{n})$ is in $\Omega(\mathrm{f}(\mathrm{n}))$ if there exist positive constants c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$
$\omega(f(n))$ is the set of all functions asymptotically greater than $f(n)$
- $g(n)$ is in $\omega(f(\mathrm{n}))$ if for any positive constant c , there exists a positive constant n_{0} such that
$\mathrm{g}(n)>c \mathrm{f}(\mathrm{n})$ for all $n \geq n_{0}$
1/13/2012
cse 373 12wi - Asymptotic Analysis II
16

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
Θ	$=$
o	$<$
ω	$>$

Types of Analysis

Two orthogonal axes:

- bound flavor (usually we talk about upper or tight)
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (Θ)
- analysis case (usually we talk about worst)
- worst case (adversary)
- average case
- best case
- "amortized"

Which Function Grows Faster?

$$
n^{3}+2 n^{2} \text { vs. } 100 n^{2}+1000
$$

Which Function Grows Faster?
$n^{0.1}$
vs. $\log n$

1/13/2012
cse 373 12wi - Asymptotic Analysis II 21
\qquad
\qquad
Which Function Grows Faster?
$\mathrm{n}^{0.1}$
vs. $\log n$

Which Function Grows Faster?
$5 n^{5}$
vS.
n!

Which Function Grows Faster?
$5 n^{5}$
vs.
n!

cse 373 12wi - Asymptotic Analysis II

Nested Loops

```
for i = 1 to n do
    for j = 1 to n do
        sum = sum + 1
```

for $i=1$ to n do
for $j=1$ to n do
sum $=$ sum +1

More Nested Loops

```
for i = 1 to n do
    for j = 1 to n do
        if (cond) {
            do_stuff(sum)
            } else {
                for k = 1 to n*n
                    sum += 1
```


Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory \& mathematics
- Examine the algorithm itself, mathematically, not the implementation
- Reason about performance as a function of n
- Be able to mathematically prove things about performance
- Yet, timing has its place
- In the real world, we do want to know whether
implementation A runs faster than implementation B on data set C
- Ex: Benchmarking graphics cards
- We will do some timing in our homeworks
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

1/13/2012
cse 373 12wi - Asymptotic Analysis II

