
1

01/23/2012 1

Binary Search Trees

CSE 373
Data Structures & Algorithms

Ruth Anderson
Winter 2012

cse 373 12wi - Binary Search Trees 01/23/2012 2

Today’s Outline
• Announcements

– Assignment #2 due Wed, Jan 25 at the BEGINNING of
lecture

• Today’s Topics:
– Asymptotic Analysis
– Binary Search Trees

cse 373 12wi - Binary Search Trees

01/23/2012 33

Tree Calculations
Recall: height is max number

of edges from root to a leaf

Find the height of the tree...

t

runtime:

cse 373 12wi - Binary Search Trees 01/23/2012 4

Tree Calculations Example
A

E

B

D F

C

G

IH

KJ L

M

P

N

What is the height of this tree?

cse 373 12wi - Binary Search Trees

What is the depth of node L?

01/23/2012 5

More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

cse 373 12wi - Binary Search Trees 01/23/2012 6

Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t.element;

traverse (t.right);

}

}

Which one is this?

cse 373 12wi - Binary Search Trees

2

01/23/2012 7

Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty)
– right subtree (maybe empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

cse 373 12wi - Binary Search Trees 01/23/2012 8

Binary Tree: Representation

A
right

pointer
left

pointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

cse 373 12wi - Binary Search Trees

01/23/2012 9

Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree

cse 373 12wi - Binary Search Trees 01/23/2012 10

ADTs Seen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

cse 373 12wi - Binary Search Trees

01/23/2012 11

The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes
called the “Map ADT”

• jjyan
Jijiang "Johnny" Yan
OH: Th 2:30-4:30pm,
CSE 220

• aosobov
Anton Osobov
OH: W 11:30am-12:30pm
CSE 218

• talarico
Ian Talarico
OH: Fri 1:30-2:30pm
CSE 218

• ledong
Laura Dong
OH: Tu 1-2pm
CSE 216

insert(jjyan, ….)

find(ledong)

• ledong
Laura Dong, …

cse 373 12wi - Binary Search Trees 01/23/2012 12

A Modest Few Uses
• Search : phone directories or other

large data sets (genome
maps, web pages)

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!

cse 373 12wi - Binary Search Trees

3

01/23/2012 13

Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

cse 373 12wi - Binary Search Trees

Implementations
For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list O(1) * O(n) O(n)

• Unsorted array O(1) * O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

We’ll see a Binary Search Tree (BST) probably does better,
but not in the worst case unless we keep it balanced

*Note: If we do not allow duplicates values to be inserted, we would need to do O(n) work (a find
operation) to check for a key’s existence before insertion

01/23/2012 14cse 373 12wi - Binary Search Trees

01/23/2012 15

Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?

cse 373 12wi - Binary Search Trees 01/23/2012 1616

Are these BSTs?

3

1171

84

5

4

181062

155

8

20

21

7

11

Activity
4

181062

115

8

2015cse 373 12wi - Binary Search Trees

01/23/2012 17

Find in BST, Recursive
Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}

2092

155

10

307 17

Runtime:

cse 373 12wi - Binary Search Trees 01/23/2012 18

Find in BST, Iterative
Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else

root = root.right;

}

return root;

}

2092

155

10

307 17

Runtime:
cse 373 12wi - Binary Search Trees

4

01/23/2012 19

Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

cse 373 12wi - Binary Search Trees 01/23/2012 20

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an

initially empty BST.
Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc.

cse 373 12wi - Binary Search Trees

01/23/2012 21

Bonus: FindMin/FindMax

• Find minimum

• Find maximum
2092

155

10

307 17

cse 373 12wi - Binary Search Trees 01/23/2012 22

Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?

cse 373 12wi - Binary Search Trees

01/23/2012 23

Lazy Deletion

Instead of physically deleting nodes,
just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

cse 373 12wi - Binary Search Trees 01/23/2012 24

Non-lazy Deletion
• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed.
Then “fix” the tree so that it is still a binary search
tree.

• Three cases:
– node has no children (leaf node)

– node has one child

– node has two children

cse 373 12wi - Binary Search Trees

5

01/23/2012 25

Non-lazy Deletion – The Leaf Case

2092

155

10

307 17

Delete(17)

cse 373 12wi - Binary Search Trees 01/23/2012 26

Deletion – The One Child Case

2092

155

10

307

Delete(15)

cse 373 12wi - Binary Search Trees

01/23/2012 27

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

cse 373 12wi - Binary Search Trees 01/23/2012 28

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees!

Options:

• succfrom right subtree: findMin(t.right)

• predfrom left subtree : findMax(t.left)

Now delete the original node containing succor pred

• Leaf or one child case – easy!

cse 373 12wi - Binary Search Trees

01/23/2012 29

Finally…

3092

207

10

7 replaces 5

Original node containing
7 gets deleted

cse 373 12wi - Binary Search Trees

Binary Tree: Some Numbers
Recall: height of a tree = longest path from root to leaf

(count # of edges)

For binary tree of height h:
– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

01/23/2012 30cse 373 12wi - Binary Search Trees

6

01/23/2012 31

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is Θ(log n)
– Worst case height is Θ(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Conditionthat
1. ensures depth isΘ(log n) – strong enough!

2. is easy to maintain – not too strong!

cse 373 12wi - Binary Search Trees 01/23/2012 32

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

cse 373 12wi - Binary Search Trees

01/23/2012 33

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

cse 373 12wi - Binary Search Trees

