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Binary Search Trees

CSE 373
Data Structures & Algorithms

Ruth Anderson
Winter 2012
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Today’s Outline
• Announcements

– Assignment #2 due Wed, Jan 25 at the BEGINNING of 
lecture

• Today’s Topics: 
– Asymptotic Analysis
– Binary Search Trees

cse 373 12wi - Binary Search Trees

01/23/2012 33

Tree Calculations
Recall: height is max number 

of edges from root to a leaf

Find the height of the tree...

t

runtime:
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Tree Calculations Example
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What is the height of this tree?
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What is the depth of node L?
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More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for 
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)
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Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t.element;

traverse (t.right);

}

}

Which one is this?
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Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty) 
– right subtree (maybe empty) 

• Representation:
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Binary Tree: Representation
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Binary Tree: Special Cases
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ADTs Seen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue
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The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes 
called the “Map ADT”

• jjyan
Jijiang "Johnny" Yan
OH: Th 2:30-4:30pm,
CSE 220

• aosobov
Anton Osobov
OH:  W 11:30am-12:30pm
CSE 218

• talarico
Ian Talarico
OH: Fri 1:30-2:30pm
CSE 218

• ledong
Laura Dong
OH: Tu 1-2pm
CSE 216

insert(jjyan, ….)

find(ledong)

• ledong
Laura Dong, …
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A Modest Few Uses
• Search : phone directories or other 

large data sets (genome 
maps, web pages)

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!
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Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array                               

insert deletefind
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Implementations
For dictionary with n key/value pairs

insert     find      delete

• Unsorted linked-list           O(1)  *      O(n)            O(n)

• Unsorted array                  O(1)  *       O(n)            O(n)

• Sorted linked list                O(n)         O(n)            O(n)

• Sorted array                      O(n)          O(log n)     O(n)

We’ll see a Binary Search Tree (BST) probably does better, 
but not in the worst case unless we keep it balanced

*Note: If we do not allow duplicates values to be inserted, we would need to do O(n) work  (a find 
operation) to check for a key’s existence before insertion
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Binary Search Tree Data Structure
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• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?
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Are these BSTs?
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Find in BST, Recursive
Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}

2092

155

10

307 17

Runtime:
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Find in BST, Iterative
Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else 

root = root.right;

}

return root;

}

2092

155

10

307 17

Runtime:
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Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)
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BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an 

initially empty BST. 
Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc. 
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Bonus: FindMin/FindMax

• Find minimum

• Find maximum
2092

155

10

307 17
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Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?
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Lazy Deletion

Instead of physically deleting nodes, 
just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be 

modified (e.g., min and max)

2092

155

10

307 17
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Non-lazy Deletion
• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed.  
Then “fix” the tree so that it is still a binary search 
tree.

• Three cases:
– node has no children (leaf node)

– node has one child

– node has two children
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Non-lazy Deletion – The Leaf Case

2092

155

10

307 17

Delete(17)
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Deletion – The One Child Case

2092

155

10

307

Delete(15)
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Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?
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Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be 
between the two child subtrees!

Options:

• succfrom right subtree: findMin(t.right)

• predfrom left subtree  : findMax(t.left)

Now delete the original node containing succor pred

• Leaf or one child case – easy!
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Finally… 

3092

207

10

7 replaces 5

Original node containing
7 gets deleted
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Binary Tree: Some Numbers
Recall: height of a tree = longest path from root to leaf 

(count # of edges)

For binary tree of height h:
– max # of leaves: 

– max # of nodes:

– min # of leaves:

– min # of nodes:
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Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is Θ(log n)
– Worst case height is Θ(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Conditionthat
1. ensures depth isΘ(log n)        – strong enough!

2. is easy to maintain – not too strong!
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Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height
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Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height
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