Disjoint Sets and Dynamic Equivalence Relations

CSE 373

Data Structures and Algorithms

2/03/2012

Today's Outline

- Announcements
 - Assignment #3 due Wed 2/8 at 11pm.
- · Today's Topics:
 - Disjoint Sets & Dynamic Equivalence

2/03/2012

2

Motivation

Some kinds of data analysis require keeping track of transitive relations.

Equivalence relations are one family of transitive relations

Grouping pixels of an image into colored regions is one form of data analysis that uses "dynamic equivalence relations".

Creating mazes without cycles is another application.

Later we'll learn about "minimum spanning trees" for networks, and how the dynamic equivalence relations help out in computing spanning trees.

2/03/2012

Disjoint Sets

- Two sets S₁ and S₂ are disjoint if and only if they have no elements in common.
- S_1 and S_2 are disjoint iff $S_1 \cap S_2 = \emptyset$ (the intersection of the two sets is the empty set)

For example {a, b, c} and {d, e} are disjoint.

But $\{x, y, z\}$ and $\{t, u, x\}$ are not disjoint.

2/03/2012

/2012 4

Equivalence Relations

- A binary relation R on a set S is an equivalence relation provided it is reflexive, symmetric, and transitive:
- Reflexive R(a,a) for all a in S.
- Symmetric $R(a,b) \rightarrow R(b,a)$
- Transitive $R(a,b) \wedge R(b,c) \rightarrow R(a,c)$

Is \leq an equivalence relation on integers?

Is "is connected by roads" an equivalence relation on cities?

2/03/2012

Induced Equivalence Relations

• Let S be a set, and let P be a partition of S.

 $P = \{ S_1, S_2, \dots, S_k \}$

P being a partition of S means that:

 $i \neq j \rightarrow S_i \cap S_j = \emptyset$ and $S_1 \cup S_2 \cup \ldots \cup S_k = S$

P induces an equivalence relation R on S:
 R(a,b) provided a and b are in the same subset (same element of P).

So given any partition P of a set S, there is a corresponding equivalence relation R on S.

2/03/2012

6

Example

```
 \begin{split} \bullet & \quad S = \{a, b, c, d, e\} \\ & \quad P = \{ \ S_1, S_2, S_3 \ \} \\ & \quad S_1 = \{a, b, c\}, \ S_2 = \{d\}, \ S_3 = \{e\} \\ & \quad P \ being \ a \ partition \ of \ S \ means \ that: \\ & \quad i \neq j \rightarrow S_i \cap S_j = \varnothing \quad \text{and} \\ & \quad S_1 \cup S_2 \cup \ldots \cup S_k = S \end{split}
```

• P induces an equivalence relation R on S:

```
R = \{ \ (a,a), \ (b,b), \ (c,c), \ (a,b), \ (b,a), \ (a,c), \ (c,a), \\ (b,c), \ (c,b), \\ (d,d), \\ (e,e) \ \}
```

2/03/2012

7

Introducing the UNION-FIND ADT

- Also known as the Disjoint Sets ADT or the Dynamic Equivalence ADT.
- There will be a set S of elements that does not change.
- We will start with a partition P₀, but we will modify it over time by combining sets.
- The combining operation is called "UNION"
- Determining which set (of the current partition) an element of S belongs to is called the "FIND" operation.

2/03/2012 8

Example

- Maintain a set of pairwise disjoint* sets.
 - {3,5,7}, {4,2,8}, {9}, {1,6}
- Each set has a unique name: one of its members
 - $-\{3,\underline{5},7\},\{4,2,\underline{8}\},\{\underline{9}\},\{\underline{1},6\}$

*Pairwise Disjoint: For any two sets you pick, their intersection will be empty)

2/03/2012

Union

- Union(x,y) take the union of two sets named x and y
 - {3,<u>5</u>,7}, {4,2,<u>8</u>}, {<u>9</u>}, {<u>1</u>,6} - Union(5,1)

 $\{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\}, \{9\},$

To perform the union operation, we replace sets x and y by $(x \cup y)$

2/03/2012 10

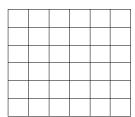
Find

- Find(x) return the name of the set containing x.
 - $-\{3,\underline{5},7,1,6\},\{4,2,\underline{8}\},\{\underline{9}\},$
 - Find(1) = 5
 - Find(4) = 8

2/03/2012

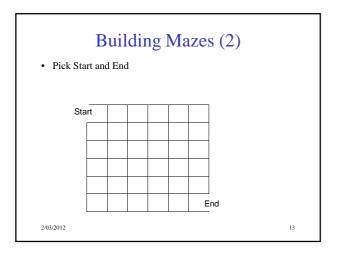
Application: Building Mazes

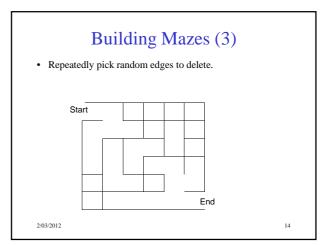
· Build a random maze by erasing edges.



2/03/2012

12



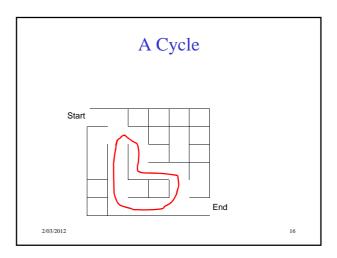


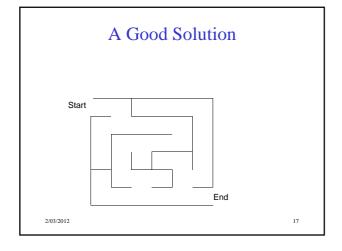
Desired Properties

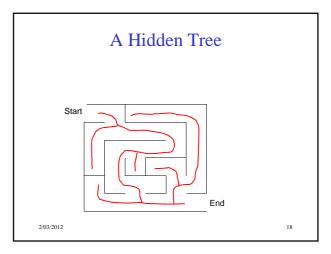
- None of the boundary is deleted
- Every cell is reachable from every other cell.
- Only one path from any one cell to another (There are no cycles no cell can reach itself by a path unless it retraces some part of the path.)

2/03/2012

15



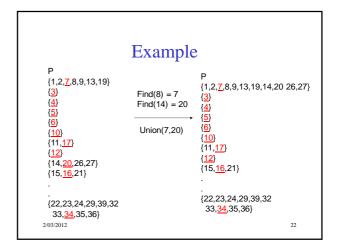


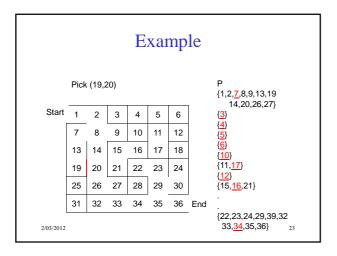


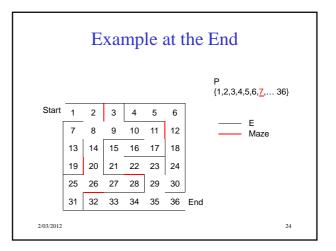
Number the Cells We have **disjoint sets** $P = \{\{1\}, \{2\}, \{3\}, \{4\}, \dots \{36\}\}\$ each cell is unto itself. We have all possible edges $E = \{(1,2), (1,7), (2,8), (2,3), \dots \}$ 60 edges total. 2/03/2012

```
Basic Algorithm
P = set of disjoint sets of connected cells
 E = set of edges
 Maze = set of maze edges (initially empty)
While there is more than one set in P {
 pick a random edge (x,y) and remove from E
  u := Find(x)
  v := Find(y);
                // removing edge (x,y) connects previously non-
                // connected cells x and y - leave this edge removed!
   Union(u,v)
  else
                // cells x and y were already connected, add this
                // edge to set of edges that will make up final maze.
    add (x,y) to Maze
All remaining members of \ensuremath{\text{E}} together with Maze form the maze
```

```
Example Step
        Pick (8,14)
                                                  {1,2,<u>7</u>,8,9,13,19}
                                                 (3)
(4)
(5)
 Start
               2
                     3
                          4
                                5
                                     6
                          10
                                     12
                                                 {<u>10</u>}
{11,<u>17</u>}
        13
              14
                    15
                          16
                               17
                                     18
                   21
              20
                         22
                                     24
        19
                               23
                                                  {14,20,26,27}
                   27
        25
              26
                         28
                               29
                                     30
                                                 {15,<u>16</u>,21}
                               35
                                          End
              32
                    33
                         34
                                     36
                                                 {22,23,24,29,30,32
                                                  33,<u>34</u>,35,36}
2/03/2012
```





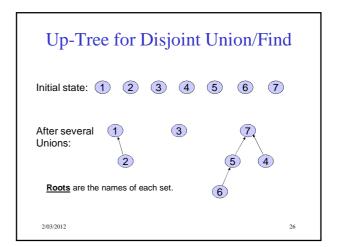


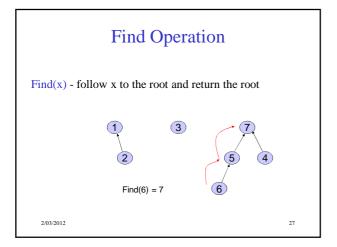
Implementing the Disjoint Sets ADT

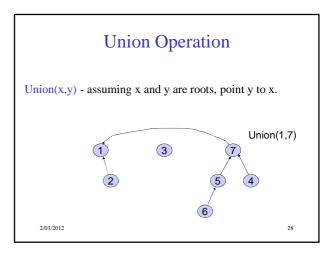
- *n* elements, Total Cost of: *m* finds, ≤ *n*-1 unions
- Target complexity: O(m+n)i.e. O(1) amortized
- O(1) worst-case for find as well as union would be great, but...

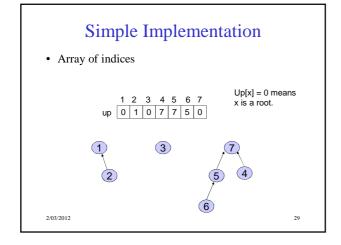
Known result: both find and union cannot be done in worst-case O(1) time

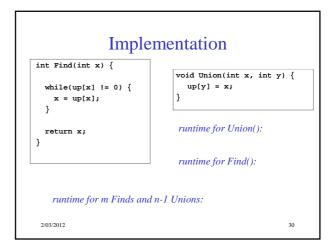
03/2012











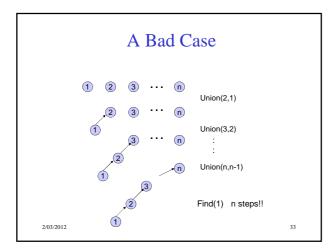
Find Solutions Recursive Find(up[] : integer array, x : integer) : integer { //precondition: x is in the range 1 to size// if up[x] = 0 then return x else return Find(up,up[x]); } Iterative Find(up[] : integer array, x : integer) : integer { //precondition: x is in the range 1 to size// while up[x] ≠ 0 do x := up[x]; return x; } 2002012

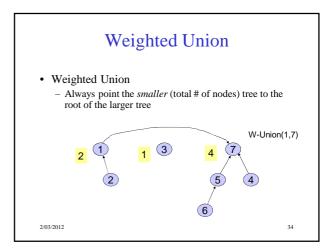
Now this doesn't look good ⊗

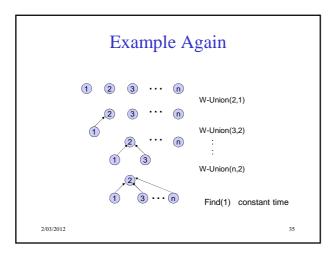
Can we do better? Yes!

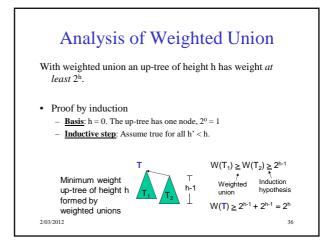
- 1. Improve union so that *find* only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$
- 2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m+n)$

2/03/2012 32









Analysis of Weighted Union (cont) Let T be an up-tree of weight n formed by weighted

union. Let h be its height.

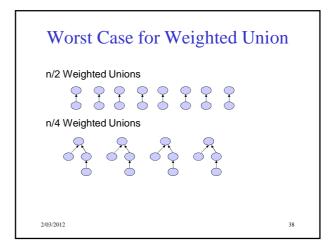
$$n \ge 2^h$$

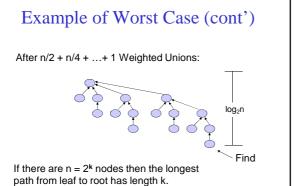
$$log_2 \ n \ge h$$

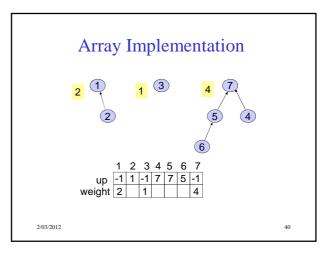
- Find(x) in tree T takes O(log n) time.
 - Can we do better?

2/03/2012

2/03/2012







Weighted Union W-Union(i,j : index){ new runtime for Union(): //i and j are roots wi := weight[i]; wj := weight[j]; if wi < wj then new runtime for Find(): up[i] := j;weight[j] := wi + wj;else up[j] :=i; weight[i] := wi +wj; } runtime for m finds and n-1 unions =

Nifty Storage Trick • Use the same array representation as before • Instead of storing -1 for the root, simply store -size [Read section 8.4, page 299] 2/03/2012

How about Union-by-height?

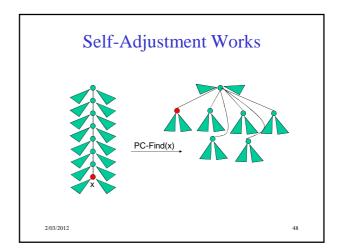
• Can still guarantee O(log n) worst case depth

Left as an exercise!

• Problem: Union-by-height doesn't combine very well with the new find optimization technique we'll see next

2/03/2012

Path Compression On a Find operation point all the nodes on the search path directly to the root. PC-Find(3) B 9 208/2012 45



Path Compression Find

Interlude: A Really Slow Function

Ackermann's function is a <u>really</u> big function A(x, y) with inverse $\alpha(x, y)$ which is <u>really</u> small

How fast does $\alpha(x, y)$ grow?

 $\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2³⁰⁰)

 $\boldsymbol{\alpha}$ shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences

2/03/2012 5

A More Comprehensible Slow Function

log* x = number of times you need to compute log to bring value down to at most 1

```
\begin{split} E.g. & \log^* 2 = 1 \\ & \log^* 4 = \log^* 2^2 = 2 \\ & \log^* 16 = \log^* 2^{2^2} = 3 \\ & \log^* 65536 = \log^* 2^{2^2} = 4 \\ & (\log \log \log \log 65536 = 1) \\ & \log^* 2^{6536} = \dots = 5 \end{split}
```

Take this: $\alpha(m,n)$ grows even slower than $\log^* n$!!

2/03/2012

Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $O(p \cdot \alpha(p, n))$

For *all practical purposes* this is amortized constant time: $O(p \cdot 4)$ for p operations!

 Very complex analysis – worse than splay tree analysis etc. that we skipped!

2/03/2012 52

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n) where log* n is a very slow growing function.
 - Log * n < 7 for all reasonable n. Essentially constant time per operation!

2/03/2012

53

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.

2/03/2012 54