Beyond Comparison Sorting

CSE 373
Data Structures \& Algorithms
Ruth Anderson

Comparison Sorting

So far we have only talked about comparison sorting:
Assume we have n comparable elements in an array and we want to rearrange them to be in increasing order:
Input:

- An array \mathbf{A} of data records
- A key value in each data record
- A comparison function (consistent and total)
- Given keys a \& b, what is their relative ordering? <, =, >?
- Ex: keys that implement Comparable or have a Comparator that can handle them
Effect:
- Reorganize the elements of \mathbf{A} such that for any \mathbf{i} and \boldsymbol{j},
if $i<j$ then $\mathbf{A}[i] \leq \mathbf{A}[j]$

An algorithm doing this is a comparison sort
03/02/2012
03/02/2012

Today's Outline

- Admin:
- HW \#5 - Graphs, due Thurs March 1 at 11 pm
- HW \#6 - last homework, on sorting, individual project, no Java programming, coming soon, due Thurs March 8.
- Sorting
- Comparison Sorting
- Beyond Comparison Sorting
\qquad 2

The Big Picture				
$\begin{gathered} \text { Simple } \\ \text { algorithms: } \\ \mathbf{O}\left(n^{2}\right) \end{gathered}$	Fancier algorithms $\mathbf{O}(n \log n)$	Comparison lower bound: $\boldsymbol{\Omega}(\boldsymbol{n} \log n)$	Specialized algorithms: $\mathbf{O}(n)$	Handling huge data sets
Insertion sort Selection sort Shell sort ...	Heap sort Merge sor Quick sort ...		Bucket sort Radix sort	External sorting
03/22/2012				3

How fast can we sort?

- Heapsort \& mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$??? - Instead: we actually KNOW that this is impossible!!
- (See end of slide deck for proof)
- In particular, it is impossible assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K and put each element in its proper bucket (a.ka. bin)
- If data is only integers, don't even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

03/02/2012

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K and put each element in its proper bucket (a.ka. bin)
- If data is only integers, don't even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array		Example: $\mathrm{K}=5$	
1	3	input $(5,1,3,4,3,2,1,1,5,4,5)$ output: $1,1,1,2,3,3,4,4,5,5,5$	
2	1	2	
3			

What is the running time?
03/02/2012

Bucket Sort with Data

- Most real lists aren't just \#'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in $\mathrm{O}(1)$ (say, keep a pointer to last element)

-Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars -This result is 'stable'; Casablanca still before Star Wars 03/02/2012

Radix sort

- Radix = "the base of a number system"
- Examples will use 10 because we are used to that
- In implementations use larger numbers
- For example, for ASCII strings, might use 128
- Idea:
- Bucket sort on one digit at a time
- Number of buckets = radix
- Starting with least significant digit, sort with Bucket Sort
- Keeping sort stable
- Do one pass per digit
- After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census 03/02/2012

Example

Radix $=10$

0	1	2	3	4	5	6	7	8	9
	721		3				537	478	9
			143				67	38	

First pass:

1. bucket sort by ones digit
2. Iterate thru and collect into a list

List is sorted by first digit.
3
143
537
67
478
38
9
12

	0	1	2	3	4	5	6	7	8	9
Example	3 9		721	537 38	143		67	478		
Radix $=10$										
	0	1	2	3	4	5	6	7	8	9
	3 9 38	143			478	537		721		
	67	d pas	s: buck Only	3 digit	by W	're d	O git ne!	der n		

Student Activity									
BucketSort on Isd: - Input:126, 328, 636, 341, 416, 131, 328									
0	1	2	3	4	5	6	7	8	9
BucketSort on next-higher digit:									
0	1	2	3	4	5	6	7	8	9
BucketSort on msd:									
0	1	2	3	4	5	6	7	8	9

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
- e.g. Base 10 \#: 10; binary \#: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
- e.g. Ages of people: 3; Phone \#: 10; Person's name: ?
- Work per pass is 1 bucket sort: \qquad
- Each pass is a Bucket Sort
- Total work is \qquad
- We do 'P' passes, each of which is a Bucket Sort

Analysis of Radix Sort

Comparison to Comparison Sorts

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
- Base 10 \#: 10; binary \#: 2; Alpha-numeric char: 62

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
- Approximate run-time: $15^{\star}(52+n)$
- This is less than n log n only if $n>33,000$
- Of course, cross-over point depends on constant factors of the implementations plus P and B
- And radix sort can have poor locality properties
- Not really practical for many classes of keys
- Strings: Lots of buckets
- Total work is $O(P(B+n))$
- We do 'P' passes, each of which is a Bucket Sort

Sorting massive data

- Need sorting algorithms that minimize disk/tape access time:
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- MergeSort is the basis of massive sorting
- In-memory sorting of reasonable blocks can be combined with larger mergesorts
- Mergesort can leverage multiple disks

External Sorting

- For sorting massive data
- Need sorting algorithms that minimize disk/tape access time
- External sorting - Basic Idea:
- Load chunk of data into Memory, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples

Features of Sorting Algorithms

In-place

- Sorted items occupy the same space as the original items. (No copying required, only $\mathrm{O}(1)$ extra space if any.)

Stable

- Items in input with the same value end up in the same order as when they began.

Examples:

- Merge Sort - not in place, stable
- Quick Sort - in place, not stable

03/02/2012

Last word on sorting

- Simple $O\left(n^{2}\right)$ sorts can be fastest for small n
- selection sort, insertion sort (latter linear for mostly-sorted)
- good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
- heap sort, in-place but not stable
- merge sort, not in place but stable and works as external sort
- quick sort, in place but not stable and $O\left(n^{2}\right)$ in worst-case
- often fastest, but depends on costs of comparisons/copies
- $\boldsymbol{\Omega}(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
- Bucket sort good for small maximum key values
- Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

03/02/2012

How fast can we sort?

- Heapsort \& mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- Instead: prove that this is impossible
- Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A Different View of Sorting

- Assume we have n elements to sort
- And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$,

A Different View of Sorting

- Assume we have n elements to sort
- And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$, six possibilities
$a[0]<a[1]<a[2] \quad a[0]<a[2]<a[1] \quad a[1]<a[0]<a[2]$
$a[1]<a[2]<a[0] \quad a[2]<a[0]<a[1] \quad a[2]<a[1]<a[0]$
- In general, n choices for least element, then $n-1$ for next, then n-2 for next, ...
- $n(n-1)(n-2) \ldots(2)(1)=n!$ possible orderings

Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the n ! possible answers
- Starts "knowing nothing", "anything is possible"
- Gains information with each comparison, eliminating some possiblities
- Intuition: At best, each comparison can eliminate half of the remaining possibilities
- In the end narrows down to a single possibility

Representing the Sort Problem

- Can represent this sorting process as a decision tree:
- Nodes are sets of "remaining possibilities"
- At root, anything is possible; no option eliminated
- Edges represent comparisons made, and the node resulting from a comparison contains only consistent possibilities
- Ex: Say we need to know whether $a<b$ or $b<a$; our root for n=2
- A comparison between $\mathrm{a} \& \mathrm{~b}$ will lead to a node that contains only one possibility (either $a<b$ or $b<a$)

Note: This tree is not a data structure, it's what our proof uses to represent "the most any algorithm could know"

Decision tree for $n=3$

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
- Perform only comparisons between 2 elements; binary result - Ex: Is a<b? Yes or no?
- We assume no duplicate elements
- Assume algorithm doesn't ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n ! answers
- Each answer is a leaf (no more questions to ask)
- So the tree must be big enough to have n ! leaves
- Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
- So no algorithm can have worst-case running time better than the height of the decision tree

Example: Sorting a, b, c

Lower bound on Height

- A binary tree of height h has at most how many leaves?
L \leq
- A binary tree with L leaves has height at least: h \geq \qquad
- The decision tree has how many leaves: \qquad
- So the decision tree has height:
h \geq \qquad

03/02/2012 33

Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with n ! leaves

- Turns out average-case is same asymptotically
- Fine, how tall is a binary tree with n ! leaves?

Now: Show that a binary tree with $n!$ leaves has height $\boldsymbol{\Omega}(n \log n)$

- That is, $\mathrm{n} \log \mathrm{n}$ is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won't be faster)
- Factorial function grows very quickly

Then we'll conclude that: (Comparison) Sorting is $\boldsymbol{\Omega}(n \log n)$

- This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!
03/02/2012

Lower bound on Height

- A binary tree of height h has at most how many leaves?
$L \leq 2^{h}$
- A binary tree with L leaves has height at least: $h \geq \log _{2} L$
- The decision tree has how many leaves: N!
- So the decision tree has height:

$$
\mathrm{h} \geq \log _{2} \mathrm{~N}!
$$

Lower bound on height

- The height of a binary tree with L leaves is at least $\log _{2} L$
- So the height of our decision tree, h :
$h \geq \log _{2}(n!)$
property of binary trees
$=\log _{2}\left(n^{*}(n-1)^{*}(n-2) \ldots(2)(1)\right) \quad$ definition of factorial
$=\log _{2} n+\log _{2}(n-1)+\ldots+\log _{2} 1 \quad$ property of logarithms
$\geq \log _{2} n+\log _{2}(n-1)+\ldots+\log _{2}(n / 2) \quad$ keep first $n / 2$ terms
$\geq(n / 2) \log _{2}(n / 2) \quad$ each of the $n / 2$ terms left is $\geq \log _{2}(n / 2)$
$=(n / 2)\left(\log _{2} n-\log _{2} 2\right) \quad$ property of logarithms
$=(1 / 2) \operatorname{nlog}_{2} n-(1 / 2) n \quad$ arithmetic
" =" $\boldsymbol{\Omega}(n \log n)$

