
CSE 373, Winter 2013
Final Exam, Tuesday, March 19, 2012

Name: ___

Quiz Section: ___________________ TA/Grader: ___________________

Student ID #: ___________________

Rules:
• You have 110 minutes to complete this exam.

You may receive a deduction if you keep working after the instructor calls for papers.
• This test is open-book/notes. You may use any paper resources or textbooks you like.
• You may not use any computing devices, including calculators, cell phones, or music players.
• Unless otherwise indicated, your code will be graded on proper behavior/output, not on style.
• Please do not abbreviate code, such as writing ditto marks ("") or dot-dot-dot marks (...).
• If you enter the room, you must turn in an exam and will not be permitted to leave without doing so.
• You must show your Student ID to a TA or instructor for your submitted exam to be accepted.

Good luck! You can do it!

Problem Description Earned Max
1 Big-Oh 10
2 Sort Tracing 10
3 Sorting Algorithm Selection 10
4 Sort Algorithm Implementation 15
5 Graph Properties 15
6 Graph Paths 15
7 Graph Implementation 15
8 Parallelism / Concurrency 10

TOTAL Total Points 100

1 of 11

1. Big-Oh
Give a tight bound of the runtime complexity class for each of the following code fragments in Big-Oh notation, in
terms of the variable N. Write your answer on the right side.

Question Answer
a)
Map<Integer, String> map =
 new TreeMap<Integer, String>();
for (int i = 1; i <= N; i++) {
 map.put(i, "foo");
 if (map.containsKey(i / 100)) {
 map.remove(i - 1);
 map.put(i, "bar");
 }
}

O(___________)

b)
List<String> list = new ArrayList<String>();
for (int i = N; i >= 1; i--) {
 for (int j = 1; j <= i; j++) {
 if (!list.contains(i * j)) {
 list.add(i * j);
 }
 }
}
for (int j = 1; j <= N; j++) {
 list.add(j);
}
System.out.println(list);

O(___________)

c)
Map<Integer, Integer> map =
 new HashMap<Integer, Integer>();
for (int i = 1; i <= N; i++) {
 map.put(i, i+1);
}
int sum = 0;
for (int i : map.keySet()) {
 Set<Integer> copy =
 new HashSet<Integer>(map.values());
 if (copy.contains(i * 2)) {
 sum++;
 }
}
System.out.println(sum);

O(___________)

2 of 11

2. Sort Tracing
a) // index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 { 38, 36, 51, 45, 66, 58, 53, 9, 90, 91, 85, 48, 13, 40, 58, 45, 23}
Trace the execution of the shell sort algorithm over the array above. Use gaps of N/2, N/4, ..., 2, 1. Show each pass
of the algorithm and the state of the array after the pass has been performed, until the array is sorted. Please clearly
label each intermediate array so we know what gap is being used at each step.

3 of 11

2. Sort Tracing
b) // index 0 1 2 3 4 5 6 7 8 9 10

 { 16, 21, 45, 8, 11, 53, 3, 26, 49, 31, 12}
Trace the execution of the quick sort algorithm over the array above, using the first element as the pivot. Show each
pass of the algorithm, with the pivot selection and partitioning, and the state of the array as/after the partition is
performed, until the array is sorted. You do not need to show details of partitioning calls over ranges of only 1 or 2
elements.

4 of 11

3. Sorting Algorithm Selection

For each of the following situations, choose the sorting algorithm we studied that will perform the best. Choose one
of: bogo, stooge, bubble, selection, insertion, shell, heap, merge, quick, or bucket sort. (For some questions, more
than one answer might be acceptable, but you only need to list one.)

a) I am sorting data that is stored over a network connection. Based on the properties of that connection, it is
extremely expensive to "swap" two elements. But looping over the elements and looking at their values is very
inexpensive. I want to minimize swaps above all other factors.

A good choice would be: _______________________ sort.

b) I have a fast computer with many processors and lots of memory. I want to choose a sorting algorithm that is fast
and can also be parallelized easily to use all of the processors to help sort the data.

A good choice would be: _______________________ sort.

c) I have an array that is already sorted. Periodically, some new data comes in and is added to the array at random
indexes, messing up the ordering. I need to re-sort the array to get it back to being fully ordered. I do not want to use
very much additional memory during the sort.

A good choice would be: _______________________ sort.

d) We are working on an unstable system. When we try to run our sort on large arrays, sometimes the sorting
algorithm will be forced to stop running in the middle of execution. (The array will be left in whatever state it was in
at the time the algorithm stopped.) But we can start the algorithm over and run it again later. So we want to choose
an algorithm that will make progress toward the goal even if it does not always finish executing.

A good choice would be: _______________________ sort.

5 of 11

4. Sorting Algorithm / Guava Collection Programming
Write a method named guavaSort that accepts an array of strings as a parameter and arranges the strings in the array
into sorted ascending order. Specifically, your sorting algorithm should use a Guava Multiset or Multimap to
implement a variation of the bucket sort algorithm that will work on strings. Use the Guava collection to count
occurrences of strings, similarly to what is done in bucket sort, and then place those strings back into the array in
sorted order. For example, suppose your method is passed the following array:

[Farm, Zoo, Car, Apple, Bee, Golf, Bee, Dog, Golf, Zoo, Zoo, Bee, Bee, Apple]
Your collection should store the following occurrences of the strings:
[Apple x 2, Bee x 4, Car, Dog, Farm, Golf x 2, Zoo x 3]
Which you should use to put the strings back into the array in sorted order:
[Apple, Apple, Bee, Bee, Bee, Bee, Car, Dog, Farm, Golf, Golf, Zoo, Zoo, Zoo]

Your code should run in O(N log N) time and use O(N) memory, where N is the number of elements in the array.
You may assume that the array passed, and all of the strings in it, are not null.
Do not construct any other auxiliary collections other than the single Multiset or Multimap.

6 of 11

5. Graph Properties
Parts a) - c) refer to the graph shown at right.

a) Circle the choice on each line that correctly describes this graph; circle
one of the two choices on each of the four lines. You do not need to
explain your answer.

- This graph is: [directed , undirected].

- This graph is: [weighted , unweighted].

- This graph is: [connected , unconnected].

- This graph is: [cyclic , acyclic].

 +---- A -------► B ----► C ----+
	\ ▲		
	\		
	\		
	+----► E ◄-----+		
	▲		
▼			
D			
 +---► F ◄--- G +------ H ◄---+

b) The vertex with the largest in-degree is ___________, which has an in-degree of _________.

The vertex with the largest out-degree is ___________, which has an out-degree of _________.

c) Write a complete adjacency matrix representation of the graph below. (Be mindful of the orientation of the matrix;
do not mix up the meaning of a row vs. a column if you want to receive full credit.)

7 of 11

6. Graph Paths
For the graph shown at right, answer the following questions:

a) Write the order in which a breadth-first search (BFS) would mark
the vertices as visited when searching for a path from vertex B to
vertex I.

Then write the path that BFS would return from B to I. Assume that
any for-each loop over neighbors returns them in ABC order.

 4 3
 +---- A ----► B ----► C ◄---+
 | | | | |
 | 5| |7 |1 |2
 | ▼ ▼ | |
 | D ----► E ◄-----+ F
3| | 5 |\ |
 | | | \ 8 |
 | | | +----+ |6
 | 1| 1| | |
 | | | | |
 | ▼ ▼ ▼ |
 +---► G ----► H ----► I ◄---+
 9 2

Vertex Visit Order: __

Path Returned: __

b) In the table below, write the cost and previous values that Dijkstra's algorithm would compute when searching for
the minimum-weight path from vertex A to all other vertices. Also write the path that the algorithm would
reconstruct from vertex A to vertex I (the vertices of the path, not the edges) and give the total cost of that path. (You
may want to walk through Dijkstra's algorithm on your own paper to make sure you have the correct answers, but
you are not required to show your work to get full credit.)

Vertex Cost Previous
A
B
C
D
E
F
G
H
I

Path from A to C: __, Cost: __________

c) Write a topological sort ordering for the vertices in the graph. Any valid topological sort ordering is considered
correct. If it is not possible to produce a topological sort of the graph, write "There is no valid topological sort" and
explain why using specific properties of the graph. (You may want to walk through the topological sort algorithm on
your own paper to make sure you have the correct answers, but you are not required to show your work to get full
credit.)

Topological Sort Ordering: __

8 of 11

7. Graph Implementation
Write a method named topologicalSort that could be added to the SearchableGraph class you wrote in
Homework 8, that returns a List of vertices representing a topological sort of the graph. (Note that some of the
graph programming problems on the practice exams involved using the Graph class externally, from the client's
perspective; this problem is asking you to add a method to SearchableGraph that would be placed inside the graph
itself, inside the SearchableGraph class, like you did on your homework.)

Recall that a topological sort ordering is an arrangement of the vertices such that
for every directed edge (v, w), vertex v appears before vertex w in the list. So for
the graph in the diagram below, one valid order to return would be the list [B,
A, C, D, E, F]. Another valid order would be [A, B, D, C, F, E]. The
exact order of the list you return does not matter as long as it satisfies the
topological sort property described previously. If the graph does not have any
valid topological sort orderings, your method should return null. If the graph is
empty, return an empty list. If the graph contains only a single vertex, return a
list containing only that vertex.

 B ---> C ----+
 | | |
 | | |
 | ▼ ▼
 | E F
 | ▲ ▲
 | | |
 ▼ | |
A ---► D -----+ |
 | |
 +------------+

You should not modify the contents of the graph (such as by adding or removing vertices or edges from the graph). A
solution that does so can receive partial credit but will receive a significant deduction. You may assume that the
graph and its vertices are not null. You may construct auxiliary collections as needed to solve this problem.

Recall that the SearchableGraph class has the following methods that you may call as needed to solve the problem:
public void addEdge(V v1, V v2)
public void addEdge(V v1, V v2, E e)
public void addEdge(V v1, V v2, int weight)
public void addEdge(V v1, V v2, E e, int weight)
public void addVertex(V v)
public void clear()
public void clearEdges()
public boolean containsEdge(E e)
public boolean containsEdge(V v1, V v2)
public boolean containsVertex(V v)
public int cost(List<V> path)
public int degree(V v)
public E edge(V v1, V v2)
public int edgeCount()
public Collection<E> edges()
public int edgeWeight(V v1, V v2)
public int inDegree(V v)
public boolean isDirected()

public boolean isEmpty()
public boolean isReachable(V v1, V v2)
public boolean isWeighted()
public List<V> minimumWeightPath(V v1, V v2)
public Set<V> neighbors(V v)
public int outDegree(V v)
public void removeEdge(E e)
public void removeEdge(V v1, V v2)
public void removeVertex(V v)
public List<V> shortestPath(V v1, V v2)
public String toString()
public String toStringDetailed()
public int vertexCount()
public Set<V> vertices()

Write your answer on the next page.

9 of 11

7. Graph Implementation (writing space)

10 of 11

8. Parallelism / Concurrency
Suppose a Stack<E> class has been written with the following methods:

• void push(E) (add to top of stack)
• E pop() (remove and return element at top of stack)
• E peek() (return element at top of stack without removing it)
• boolean isEmpty() (return true if the stack does not contain any elements)

Suppose that the peek method has been implemented inside the stack class in the following way:
 // Returns the element on top of this stack without changing the stack's state.
 // If the stack is empty, throws an IllegalArgumentException.
 1 public E peek() {
 3 if (this.isEmpty()) {
 4 throw new NoSuchElementException();
 5 } else {
 6 E topElement = this.pop();
 7 this.push(topElement);
 8 return topElement;
 9 }
10 }

The method promises to always return the top element on the stack if it is non-empty, and promises not to modify the
state of the stack (from the client's perspective). If a stack is used concurrently by two or more threads, is there an
order of execution that will violate one or both of these promises? If so, state which of the two promises can be
broken, and give an example execution order that breaks the promise(s). In your example, describe the stack's state
(elements, if any) and the order in which the lines would execute by the two threads in order to cause the problem
(give lists of ranges of numbers of lines that would execute by each thread).

11 of 11

