
CSE 373 Practice Final Exam #2
ANSWER KEY

1. Big-Oh Analysis
a) O((log N)2)
b) O(1)
c) O(N log N)
d) O(N 2)

2. Java / Guava Collection Programming

public static String commonFirstName(List<String> first, List<String> last) {
 if (first.size() != last.size() || first.isEmpty()) {
 throw new IllegalArgumentException();
 }
 Multimap<String, String> names = HashMultimap.create();

 // Note that you MUST use an implementation that implements SetMultimap interface
 // (ArrayListMultimap or LinkedListMultimap would not work)
 for (int i = 0; i < first.size(); i++) {
 names.put(first.get(i), last.get(i));
 }
 int maxNum = 0;
 String maxName = "";
 for (String firstName : names.keySet()) {
 int num = names.get(firstName).size();
 if (num > maxNum) {
 // Since you're guaranteed there was at least one name in the list,
 // this will be true at least once. >= would also work.
 maxNum = num;
 maxName = firstName;
 }
 }
 return maxName;
}

1 of 8

3. Heaps

a) after adds

 10
 / \
 19 21
 / \ / \
 75 32 107 64
 / \ / \
138 96 209 53

array: [/, 10, 19, 21, 75, 32, 107, 64, 138, 96, 209, 53]

b) after two remove-mins

 21
 / \
 32 64
 / \ / \
 75 53 107 209
 / \
138 96

array: [/, 21, 32, 64, 75, 53, 107, 209, 138, 96]

2 of 8

4. Sort Tracing

a) merge sort
 0 1 2 3 4 5 6 7 8 9
[26, 7, 63, 42, 12, 34, 1, 10, 14, 30]

[26, 7, 63, 12, 42]
[26, 7]
[26] [7]
[7, 26]
 [63, 42, 12]
 [63]
 [42, 12]
 [42][12]
 [12, 42]
 [12, 42, 63]
[7, 12, 26, 42, 63]
 [34, 1, 10, 14, 30]
 [34, 1]
 [34] [1]
 [1, 34]
 [10, 14, 30]
 [10]
 [14, 30]
 [14][30]
 [14, 30]
 [10, 14, 30]
 [1, 10, 14, 30, 34]
[1, 7, 10, 12, 14, 26, 30, 34, 42, 63]

b) heap sort
 0 1 2 3 4 5 6 7 8 9
[11, 37, 99, 77, 60, 68, 53, 10, 70, 56]
turn into max heap:
[11, 37, 99, 77, 60, 68, 53, 10, 70, 56]
[11, 37, 99, 77, 70, 68, 53, 10, 60, 56]
[11, 37, 99, 77, 70, 68, 53, 10, 60, 56]
[11, 37, 99, 77, 70, 68, 53, 10, 60, 56]
[11, 99, 70, 77, 60, 68, 53, 10, 37, 56]
[99, 77, 70, 53, 60, 68, 11, 10, 37, 56]
remove-max, move to end:
[77, 70, 68, 53, 60, 56, 11, 10, 37, 99]
[70, 68, 60, 53, 37, 56, 11, 10, 77, 99]
[68, 60, 56, 53, 37, 10, 11, 70, 77, 99]
[60, 56, 37, 53, 11, 10, 68, 70, 77, 99]
[56, 53, 37, 10, 11, 60, 68, 70, 77, 99]
[53, 37, 11, 10, 56, 60, 68, 70, 77, 99]
[37, 11, 10, 53, 56, 60, 68, 70, 77, 99]
[11, 10, 37, 53, 56, 60, 68, 70, 77, 99]
[10, 11, 37, 53, 56, 60, 68, 70, 77, 99]

c) bucket sort
 0 1 2 3 4 5 6 7 8 9
[6, 0, 9, 3, 6, 5, 2, 3, 1, 1]
create counts:
 0 1 2 3 4 5 6 7 8 9
[1, 2, 1, 2, 0, 1, 2, 0, 0, 1]
use to sort:
[1x0, 2x1, 1x2, 2x3, 1x5, 2x6, 1x9]
[0, 1, 1, 2, 3, 3, 5, 6, 6, 9]

3 of 8

5. Sorting Algorithm Implementation

// Sorts the characters in a using the bucket sort algorithm.
// Assumes that a contains only 'a' - 'z'.

public static void charBucketSort(char[] a) {
 int[] counters = new int[26];
 for (char c : a) {
 counters[(int) c - 'a']++;
 }
 int i = 0;
 for (int j = 0; j < counters.length; j++) {
 for (int k = 0; k < counters[j]; k++) {
 a[i] = (char) (j + 'a');
 i++;
 }
 }
}

// Big-Oh is O(N).

4 of 8

6. Graph Properties
a) unconnected (example: A cannot reach B)

If the graph were undirected, then it would be connected because every vertex would be able to reach every other
vertex. (Such a graph is actually called a "weakly connected" graph.)

b) acyclic

c) C has in-degree 3 (B, D, and F have edges that point to C)

d) edge list:
[(A,E:2), (B,A:1), (B,C:13), (B,E:6), (D,C:3), (E,F:4), (F,C:8), (F,D:2)]
adjacency list:
 +---+ +---+
A| |-->|E:2|
 +---+ +---+ +---+ +---+
B| |-->|A:1|-->|C:1|-->|E:6|
 +---+ +---+ +---+ +---+
C| / |
 +---+ +---+
D| |-->|C:3|
 +---+ +---+
E| |-->|F:4|
 +---+ +---+ +---+
F| |-->|C:8|-->|D:2|
 +---+ +---+ +---+

5 of 8

7. Graph Paths

a) DFS:
 B -> A -> E -> F -> D

b) Dijkstra's:
 Visited? Cost Previous
 +-------------------------------
 A | X 0 /
 B | X inf /
 C | X 11 D
 D | X 8 F
 E | X 2 A
 F | X 6 E

 path from A to C: [A, E, F, D, C], weight 11

c) topological sort:
 B, A, E, F, D, C

6 of 8

8. Graph Implementation

public static Set<String> popular(Graph<String, String> graph) {
 Set<String> results = new TreeSet<String>();
 for (String v : graph.vertices()) {
 int in = graph.inDegree(v);
 int out = graph.outDegree(v);
 if (in < 2 || in <= out) { continue; }

 int edgeWeightIn = 0;
 for (String v2 : graph.vertices()) {
 if (graph.containsEdge(v2, v)) {
 edgeWeightIn += graph.edgeWeight(v2, v);
 }
 }

 int edgeWeightOut = 0;
 for (String v2 : graph.neighbors(v)) {
 edgeWeightOut += graph.edgeWeight(v, v2);
 }

 if (edgeWeightIn > edgeWeightOut) {
 results.add(v);
 }
 }

 return results;
}

7 of 8

9. Parallel and/or Concurrent Programming

Here is an example order of execution for 2 threads that causes a deadlock. The key problem is when two threads
make opposite trades, that is, where Thread 1 trades from team A to B, and Thread 2 trades from team B to A. In
such a case, certain execution orders cause deadlock. Here is an example:

Set<Player> dodgers = ...;
Set<Player> mariners = ...;

Thread 1: trade("Joey", mariners, "Dan", dodgers);
Thread 2: trade("Randy", dodgers, "Edgar", mariners);

 1 // Moves player1 from team1 to team2, and moves player2 from team2 to team1.
 2 // If player1 is not on team1, or if player2 is not on team2,
 3 // throws an IllegalArgumentException.
 4
 5 public void trade(Player player1, Set<Player> team1,
 6 Player player2, Set<Player> team2) {
 7 if (!team1.contains(player1) || !team2.contains(player2)) {
 8 throw new IllegalArgumentException();
 9 }
10 synchronized (team1) {
11 synchronized (team2) {
12 team1.remove(player1);
13 team2.remove(player2);
14 team1.add(player2);
15 team2.add(player1);
16 }
17 }
18 }

Here is an execution order that causes deadlock:

• Thread 1 runs lines 1-10. It grabs the lock for its team1, which is mariners.

• Thread 2 runs lines 1-10. It grabs the lock for its team1, which is dodgers.

• Thread 1 runs line 11. It tries to grab the lock for its team2, which is dodgers. This lock is already held by
Thread 2, so Thread 1 blocks and waits.

• Thread 2 runs line 11. It tries to grab the lock for its team2, which is mariners. This lock is already held
by Thread 1, so Thread 2 blocks and waits.

• Neither thread will ever release its lock to free up the other thread, so both threads are deadlocked.

8 of 8

