
CSE 373, Winter 2013
Homework Assignment #8 (25 points)

Six Degrees of Kevin Bacon
Due Friday, March 15, 2013, 11:30 PM

This program focuses on implementation of graph path searching algorithms and using those algorithms to perform
searches on interesting data. Turn in files named BaconNumberFinder.java and SearchableGraph.java from the
Homework section of the course web page.
You will also need to download the support .jar archives, .java files, and input .txt files from the Homework section of the
course web site; place them in your Java project and add to it. If you are using Eclipse, place .java files in your project's
src/ folder and .txt files in the project root folder (the parent of src/). We do not guarantee that the provided tests are
exhaustive; perform additional testing of your own before you submit your work.

Part A (Six Degrees of Kevin Bacon) Description:
In the first part of this assignment, you will use a provided graph implementation to solve
the "Six Degrees of Kevin Bacon" problem. Kevin Bacon, a well-known actor, inspired a
college movie game called Six Degrees of Kevin Bacon, which is centered on finding the
Bacon number of an arbitrary actor or actress. The Bacon number of an actor or actress is
determined by the following rules:
1. Kevin Bacon himself has a Bacon number of 0 (zero).
2. The Bacon number of any other actor is defined to be the minimum of the Bacon

numbers of all others with whom the actor appeared in a movie, plus 1.
Almost every actor in Hollywood can be successfully linked to Kevin Bacon in 6 steps or
fewer, hence the name "Six Degrees of Kevin Bacon". In fact, the majority of actors have a
Bacon number of 2 or 3. The higher the Bacon number of an actor, the less connected they
are to other actors.
(Notably, Bacon is not the most linkable actor. That honor currently goes to Dennis Hopper. The average Hopper
number is 2.743. By contrast, the average Bacon number is 2.951.) More information about the Six Degrees of Kevin
Bacon is available on Wikipedia at http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon. You can play an
interactive web version of the game at http://oracleofbacon.org/.
Finding an actor's Bacon number and path to Kevin Bacon are tasks that can be solved by a computer. Movie data can be
represented a graph of actors, with edges connecting pairs of actors who appear in movies together. Common graph path
searching algorithms such as breadth-first search can discover an actor's Bacon number and path.
For this part, you are given a JAR archive Graph.jar that you should attach to your project. You must also attach the
Guava library, which is used by Graph.jar. See the course web site if you need help attaching JARs to your project.
The provided JAR archive contains a complete implementation of a SearchableGraph class that implements a provided
Graph interface. This class represents a graph of vertices and edges that can be weighted or unweighted, directed or
undirected, and uses type parameters to store information about each vertex and edge as desired. You will use this graph
class to solve the Kevin Bacon problem (as motivation to see that the graph class is useful for problem solving). In the
next part of this assignment you will re-implement parts of the graph class yourself.
You are given a complete provided main client program named MainKevinBacon.java file that creates a
SearchableGraph from a file of actors and movies. Your job is to write a file BaconNumberFinder.java that uses
the methods of the searchable graph object to search the graph for the actor's Bacon number, along with the chain of films
in which the actor appeared with each person to reach Kevin Bacon. The Bacon path is the shortest path between the
actor and Kevin Bacon. There might be multiple equally shortest paths; it does not matter which is chosen by your graph.

1 of 5

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
http://oracleofbacon.org/

Here's an example log of execution (user console input is in bold); your output should match exactly:
Welcome to CSE 373 Six Degrees of Kevin Bacon.
If you tell me an actor's name, I'll connect them to Kevin Bacon
through the movies they've appeared in. I bet your actor has
a Kevin Bacon number of less than six!
Movies file name to open (Enter for movies.txt)? movies.txt
Show runtimes of each search (Y/N, Enter for N)? N
Percentage of movies to include (Enter for 100)? 100
Reading input file ...
Actor's name? Edward Norton
Path from Edward Norton to Kevin Bacon:
Edward Norton was in "Fight Club (1999)" with Brad Pitt
Brad Pitt was in "Ocean's Eleven (2001)" with Julia Roberts
Julia Roberts was in "Flatliners (1990)" with Kevin Bacon
Edward Norton's Bacon number is 3

The exact constructor and method your BaconNumberFinder class must have are the following:
public class BaconNumberFinder {
 public BaconNumberFinder(Graph<String, String> actors) {...}
 public void findBaconNumber(String actor) {...}
}

The main client program calls your findBaconNumber method, passing the actor that the user typed (such as "Edward
Norton" above). You are to print all of the output of the movie chain leading from the actor back to Kevin Bacon as
shown in the log, with one movie per line, in that exact format, followed by the actor's Bacon number. If the actor has no
path to Kevin Bacon, print "No path found." If the user types the name of an actor that is not found in the graph, you
program should print "No such actor." See the course web site for several test case logs and match their output exactly.

The provided JAR gives you an interface Graph<V, E> and a class SearchableGraph<V, E> that implements the
interface. The generic parameter types V and E represent what type of information you want to associate with each vertex
and each edge respectively in the graph. For example, if you want to create a graph of Facebook friends, where each
vertex is a Facebook user name (a string) and each edge represents a friendship, you might want to store in each edge the
date at which the two people became friends. So you could create a graph such as the following:
 Graph<String, Date> facebook = new SearchableGraph<String, Date>();
 facebook.addVertex("Marty");
 facebook.addVertex("Jessica");
 facebook.addVertex("Stuart");
 facebook.addVertex("Rich");
 facebook.addEdge("Marty", "Jessica", new Date(2001, 05, 08));
 facebook.addEdge("Marty", "Stuart", new Date(1999, 09, 19));
 facebook.addEdge("Stuart", "Rich", new Date(1981, 07, 14));

With that same graph, you could examine the friends of a given user with code such as the following:
 for (String friend : facebook.neighbors("Marty")) {
 ...
 }

You could find out about paths between particular Facebook users with code such as the following:
 List<String> path = facebook.shortestPath("Rich", "Marty");
 // [Rich, Stuart, Marty]
 boolean reachable = facebook.isReachable("Jessica", "Rich"); // true

2 of 5

Here are the methods available in the Graph interface and SearchableGraph class. Since there are so many, we
provide full documentation on the class web site. Refer to those documents for details of each method's behavior.

public SearchableGraph<V, E>() // undirected, unweighted
public SearchableGraph<V, E>(boolean directed, boolean weighted)
public void addEdge(V v1, V v2)
public void addEdge(V v1, V v2, E e)
public void addEdge(V v1, V v2, int weight)
public void addEdge(V v1, V v2, E e, int weight)
public void addVertex(V v)
public void clear()
public void clearEdges()
public boolean containsEdge(E e)
public boolean containsEdge(V v1, V v2)
public boolean containsVertex(V v)
public int cost(List<V> path)
public int degree(V v)
public E edge(V v1, V v2)
public int edgeCount()
public Collection<E> edges()
public int edgeWeight(V v1, V v2)
public int inDegree(V v)
public boolean isDirected()
public boolean isEmpty()
public boolean isReachable(V v1, V v2) // DFS
public boolean isWeighted()
public List<V> minimumWeightPath(V v1, V v2) // Dijkstra's algorithm
public Set<V> neighbors(V v)
public int outDegree(V v)
public void removeEdge(E e)
public void removeEdge(V v1, V v2)
public void removeVertex(V v)
public List<V> shortestPath(V v1, V v2) // BFS
public String toString()
public String toStringDetailed()
public int vertexCount()
public Set<V> vertices()

Part B (SearchableGraph) Description:
In the second part of this assignment, you will re-implement the SearchableGraph class that you used in Part A. You
do not need to rewrite the entire graph implementation; you must only rewrite three path-searching algorithms: depth-first
search (DFS), breadth-first search (BFS), and Dijkstra's algorithm.
We provide you a superclass named AbstractGraph that implements all of the Graph methods other than the following
three, which you must write yourself. The idea is that AbstractGraph contains implementation of basics like
collections of vertices and edges. You can call all of the other methods on the superclass graph as appropriate to help you
implement the remaining path search behavior. As mentioned previously, please refer to the detailed Graph and
AbstractGraph documentation on the class web site to see all of the assets available to you from the superclass.
The internal graph representation in the superclass is an "adjacency map". An adjacency map is essentially an adjacency
matrix, except that a nested Map or a Guava Table is used that connects pairs of vertices to their associated edges. This
representation has similar benefits to an adjacency matrix, for example, the graph will have constant (O(1)) expected
runtime for common operations such as adding/retrieving vertices and edges, or getting collections of vertices and
neighbors. It also avoids the O(V2) memory that would be used by a full 2D array matrix representation.
You must write the following two constructors and three methods. You may define additional private methods as
needed. All methods must run in the average runtime specified. You should not add any fields to your class. None of
your methods should modify the state of the graph, in terms of the set of vertices and edges that it stores.

3 of 5

public SearchableGraph()
In this constructor you should initialize a new undirected, unweighted, empty graph. All you need to do is to call the
corresponding zero-argument constructor from the superclass.
public SearchableGraph(boolean directed, boolean weighted)
In this constructor you should initialize a new empty graph that can be directed or undirected, weighted or unweighted.
All you need to do is to call the corresponding two-argument constructor from the superclass.
public boolean isReachable(V v1, V v2)
In this method you should explore the graph to see whether there is any path that leads from the given starting vertex v1
to the given ending vertex v2, and if so, return true. If there is not any path from v1 to v2, you should return false.
You should use the depth-first search (DFS) algorithm to search for the path. By definition, any vertex can reach itself,
so if the same vertex is passed as v1 and v2, your method should return true. This method should be O(V + E), which is
the runtime of DFS. If either of the vertices passed is null, you should throw a NullPointerException. If either of
the vertices passed is not a part of the graph, you should throw an IllegalArgumentException.
The version of depth-first search shown in the lecture slides carries along a list of vertices in the path so far and adds /
removes from that list on each recursive call along the way, so that the actual path will be known once it is found. In this
assignment, though, you do not need to output the path, just return whether or not there is a path, so you do not need to
pass along any such list in your code for isReachable.

public List<V> shortestPath(V v1, V v2)
In this method you should explore the graph to find the path with the least number of vertices that leads from the given
starting vertex v1 to the given ending vertex v2, and return that path as a list of its vertices. You should use the breadth-
first search algorithm (BFS) to find the path. If v1 and v2 are the same, the shortest path from a vertex to itself should
be a one-element list containing only that vertex. This method should be O(V + E), which is the runtime of BFS. If there
is not any path from v1 to v2, you should return null. If either of the vertices passed is null, you should throw a
NullPointerException. If either of the vertices passed is not a part of the graph, you should throw an
IllegalArgumentException.

public List<V> minimumWeightPath(V v1, V v2)
In this method you should explore the graph to find the path with the lowest cost (total weight) that leads from the given
starting vertex v1 to the given ending vertex v2, and return that path as a list of its vertices You should use Dijkstra's
algorithm to find the path. If v1 and v2 are the same, the minimum weight path from a vertex to itself should be a one-
element list containing only that vertex. This method should be O(E log V) for sparse graphs, which is the runtime of
Dijkstra's algorithm. If there is not any path from v1 to v2, you should return null. If either of the vertices passed is
null, you should throw a NullPointerException. If either of the vertices passed is not a part of the graph, you
should throw an IllegalArgumentException.

See the course lecture slides and/or the textbook for the pseudo-code of each of these three graph search algorithms.
Following that pseudo-code closely will lead you to a correct solution.
Some of the path-searching algorithms expect you to keep track of information about each vertex, such as whether or not
it has been visited yet, or the current cost to reach it, or a 'previous' vertex to point back to from that vertex. To help you
implement such functionality, the abstract superclass provides an internal structure associated with each vertex called a
Vertex object (not to be confused with the generic type V). A Vertex object provides the following relevant methods:
public int cost()
public void setCost(int cost) Gets or sets a 'cost' associated with reaching this vertex. This is

useful when implementing Dijkstra's algorithm.
public V previous()
public void setPrevious(V previous) Gets or sets a 'previous' reference from this vertex to some other

vertex that should come before it in a path. This is useful when
implementing breadth-first search and Dijkstra's algorithm.

public boolean visited()
public void setVisited(boolean visited) Gets or sets a flag indicating whether this vertex has been visited

yet by your algorithm. Useful for all three path algorithms.
public void clear() Wipes out any data set previously in this Vertex object, such as

any previous vertex, cost, etc., and sets visited flag back to false.

4 of 5

The abstract superclass has a method vertexInfo that accepts a parameter of type V and returns the Vertex object
corresponding to that vertex. The superclass creates and maintains such Vertex objects for you. For example, if you
have a V object named v1 and you want to mark v1 as visited and set its cost to 42, you could write the following code:
Vertex<V> info = vertexInfo(v1);
info.setVisited(true);
info.setCost(42);
Setting and examining information about the vertices is useful to help you write the three path-searching algorithms. But
the information you set in the vertices is not automatically wiped after you are done with the algorithm. So you should
make sure to clear out all of the vertex objects at the start of each path-searching algorithm method. To do this, call the
abstract graph superclass's clearVertexInfo method:
clearVertexInfo();
When you finish this part of the assignment, you can go run your Kevin Bacon programs with your own searchable graph
class. This provides a good test of your graph code. There are other test programs posted on the class web site.

Hints:
• In Part B, we suggest implementing the three path-searching algorithms in the order shown in this handout. DFS

and BFS are easier to implement than Dijkstra's algorithm.
• Dijkstra's algorithm is supposed to use a priority queue of vertices to visit, ordered in ascending order of cost.

You can use a java.util.PriorityQueue to do this. You will need to write an inner Comparator that
compares vertices by cost, looking up their Vertex info as needed. If you modify the cost of a vertex, you
should remove that vertex from the priority queue and re-add it to repair the ordering.

• You can print the state of the graph at any time using its toString method, and to see even more detail about
every vertex and edge and associated info for each, try calling the toStringDetailed method instead, which
returns a longer string with lots of information about the graph's state.
System.out.println(this.toStringDetailed());

Style Guidelines and Grading:
We will grade your program's behavior and output to give you an External Correctness score. You can use the course
web site's Output Comparison Tool to check your output for each part of the assignment.
We will also grade your code quality (Internal Correctness). There are many general Java coding styles that you should
follow, such as naming, indentation, avoiding redundancy, etc. For a list of these, please see the Style Guide document
posted on the class web site. You should follow all of its guidelines as appropriate on this and future assignments.
Do not declare a value as a private field unless it is necessary to retain it as part of the state of your object. Your
searchable graph class should not need any fields.
You must also write efficient code and match the expected Big-Oh demands of each method. Relaxing the Big-Oh might
make it easier to implement the functionality; but the whole point is implement the graph efficiently. So this will be a
grading focus. If you implement each path searching algorithm following the descriptions from class and the textbook,
you should be okay. A common source of inefficient code is calling bulky methods as helpers when it is not necessary to
do so, or unnecessarily looping over data structures (such as looping over every vertex or edge) more than necessary.
Implement each path-searching method using the algorithm described: DFS, BFS, and Dijkstra's. If you do not do so, you
will lose points. Since your three path-searching methods use very different algorithms, and since each algorithm is
expensive to run, none of the three methods should call any of the others as a helper, because this would be inefficient.
Watch out for redundant code. If you are performing identical or very similar commands repeatedly, factor out the
common code and logic into a helper method, loop, or other facility to remove the redundancy.
In your method comment headers, comment what exceptions (if any) are thrown by each method and under what
conditions they are thrown. In addition to headers on each class and each method, also make sure to include inline
comments next to any complex or tricky code, briefly explaining its purpose. These inside-method comments are good
places to explain details of your implementation that might not be appropriate to put in method or class headers.

This document and its contents are copyright © University of Washington. All rights reserved.

5 of 5

