
1

CSE 373

Java Collection Framework, Part 2:

Priority Queue, Map

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Priority queue ADT

• priority queue: a collection of ordered elements that provides fast

access to the minimum (or maximum) element

� usually implemented using a tree structure called a heap

• priority queue operations:

� add adds in order; O(log N) worst

� peek returns minimum value; O(1) always

� remove removes/returns minimum value; O(log N) worst

� isEmpty,
clear,
size,
iterator O(1) always

3

Java's PriorityQueue class

public class PriorityQueue<E> implements Queue<E>

Queue<String> pq = new PriorityQueue<String>();

pq.add("Stuart");

pq.add("Marty");

...

removes/returns min element

returns minimum element

returns iterator over elements

removes all elements

adds value in sorted order

constructs new empty queue

Description

O(log N)

O(1)

O(1)

O(1)

O(log N)

O(1)

RuntimeMethod/Constructor

PriorityQueue<E>()

add(E value)

clear()

iterator()

peek()

remove()

4

Priority queue ordering

• For a priority queue to work, elements must have an ordering

� in Java, this means implementing the Comparable interface

• many existing types (Integer, String, etc.) already implement this

• if you store objects of your own types in a PQ, you must implement it

� TreeSet and TreeMap also require Comparable types

public class Foo implements Comparable<Foo> {

…

public int compareTo(Foo other) {

// Return > 0 if this object is > other

// Return < 0 if this object is < other

// Return 0 if this object == other

}

}

5

The Map ADT

• map: Holds a set of unique keys and a collection of values, where

each key is associated with one value.

� a.k.a. "dictionary", "associative array", "hash"

• basic map operations:

� put(key, value): Adds a

mapping from a key to

a value.

� get(key): Retrieves the

value mapped to the key.

� remove(key): Removes

the given key and its

mapped value. myMap.get("Juliet") returns "Capulet"

6

Map concepts

• a map can be thought of as generalization of a tallying array

� the "index" (key) doesn't have to be an int

� count digits: 22092310907

// (R)epublican, (D)emocrat, (I)ndependent
� count votes: "RDDDDRRRRRDDDDDDRDRRIRDRRIRDRRID"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "R" "D" "I"

value 15 14 3

"R"

"D"

"I" 15

3

14

keys values

7

Map implementation

• in Java, maps are represented by Map interface in java.util

• Map is implemented by the HashMap and TreeMap classes

� HashMap: implemented using an array called a "hash table";

extremely fast: O(1) ; keys are stored in unpredictable order

� TreeMap: implemented as a linked "binary tree" structure;

very fast: O(log N) ; keys are stored in sorted order

� A map requires 2 type parameters: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();

8

Map methods

returns the value mapped to the given key (null if not found)get(key)

removes all key/value pairs from the mapclear()

returns true if the map's size is 0isEmpty()

returns true if the map contains a mapping for the given keycontainsKey(key)

returns a string such as "{a=90, d=60, c=70}"toString()

returns the number of key/value pairs in the mapsize()

removes any existing mapping for the given keyremove(key)

adds a mapping from the given key to the given value;

if the key already exists, replaces its value with the given one

put(key, value)

returns true if given map has the same mappings as this oneequals(map)

adds all key/value pairs from the given map to this mapputAll(map)

returns a collection of all values in the mapvalues()

returns a set of all keys in the mapkeySet()

9

Using maps

• A map allows you to get from one half of a pair to the other.

� Remembers one piece of information about every index (key).

� Later, we can supply only the key and get back the related value:

Allows us to ask: What is Joe's phone number?

Map

get("Joe")

"206-685-2181"

Map

// key value

put("Joe", "206-685-2181")

10

Maps vs. sets

• A set is like a map from elements to boolean values.

� Set: Is Joe found in the set? (true/false)

� Map: What is Joe's phone number?

Set
"Joe" true

false

Map
"Joe" "206-685-2181"

11

keySet and values

• keySet method returns Set of all keys in map

� can loop over the keys in a foreach loop

� can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();

ages.put("Joe", 57);

ages.put("Geneva", 2); // ages.keySet() returns Set<String>

ages.put("Vicki", 19);

for (String name : ages.keySet()) { // Geneva -> 2
int age = ages.get(name); // Joe -> 57
System.out.println(name + " -> " + age); // Vicki -> 19

}

• values method returns Collection of all values in map

� ages.values() above returns [2, 57, 19]

� can loop over the values with a for-each loop

� no easy way to get from a value back to its associated key(s)

12

Collections summary

� It is important to be able to choose a collection properly based on the

capabilities needed and constraints of the problem to solve.

must be comparablefast ordered accessnatural/comparablePriorityQueue

uses extra memoryvery fast; O(1)order of insertionLinkedHashMap

unorderedvery fast; O(1)unpredictableHashMap

must be comparablesorted; O(log N)sorted orderTreeMap

uses extra memoryvery fast; O(1)order of insertionLinkedHashSet

unorderedvery fast; O(1)unpredictableHashSet

must be comparablesorted; O(log N)sorted orderTreeSet

poor random accessfast to modify at
both ends

by insertion, by indexLinkedList

slow to modify in
middle/front

random access; fast
to modify at end

by insertion, by indexArrayList

little functionality;
cannot resize

fast; simpleby indexarray

weaknessesbenefitsorderingcollection

13

Choosing a collection

� see also: http://initbinder.com/bunker/wp-content/uploads/2011/03/collections.png

14

Compound collections

• You will often find that you want a collection of collections:

� a list of lists; a map of strings to lists; a queue of sets; ...

• Example: how would you store people's friends?

� i.e., I need to quickly look up the names of all of Jimmy's buddies,

or test whether a given person is a friend of Jimmy's or not.

// don't forget to initialize each Set of friends

Map<String, Set<String>> pals =

new HashMap<String, Set<String>>();

pals.put("Jimmy", new HashSet<String>());

pals.get("Jimmy").add("Bill");

pals.get("Jimmy").add("Katherine");

pals.get("Jimmy").add("Stuart");

15

Iterators (11.1)

• iterator: An object that allows a client to traverse the elements of

any collection.

� Remembers a position, and lets you:

• get the element at that position

• advance to the next position

• remove the element at that position

6size

12

5

0

6

5

4

0

7

0

8

9

2

7

3

083value

910index

list

current element: 9
current index: 2

iterator

set
"the"

"to"

"from"

"we"

current element: "from"
next element: "the"

iterator

16

Iterator methods

• Iterator interface in java.util

� every collection has an iterator() method that returns an iterator

over its elements

Set<String> set = new HashSet<String>();
...
Iterator<String> itr = set.iterator();
...

returns the next element from the collection (throws a

NoSuchElementException if there are none left to examine)

next()

removes the last value returned by next() (throws an

IllegalStateException if you haven't called next() yet)

remove()

returns true if there are more elements to examinehasNext()

17

Iterator example
Set<Integer> scores = new TreeSet<Integer>();
scores.add(94);
scores.add(38); // Jenny
scores.add(87);
scores.add(43); // Marty
scores.add(72);
...

Iterator<Integer> itr = scores.iterator();
while (itr.hasNext()) {

int score = itr.next();

System.out.println("The score is " + score);

// eliminate any failing grades
if (score < 60) {

itr.remove();
}

}
System.out.println(scores); // [72, 87, 94]

18

A surprising example

• What's bad about this code?

List<Integer> list = new LinkedList<Integer>();

... (add lots of elements) ...

for (int i = 0; i < list.size(); i++) {

System.out.println(list.get(i));

}

front = 42

nextdata

-3

nextdata

17

nextdata

element 0 element 1 element 2

19

Iterators and linked lists

• Iterators are particularly useful with linked lists.

� The previous code is O(N2) because each call on get must start from

the beginning of the list and walk to index i.

� Using an iterator, the same code is O(N). The iterator remembers its

position and doesn't start over each time.

current element: -3
current index: 1

iterator

front = 42

nextdata

-3

nextdata

17

nextdata

element 0 element 1 element 2

20

ListIterator

ListIterator<String> li = myList.listIterator();

• lists have a more powerful ListIterator with more methods

� can iterate forwards or backwards

� can add/set element values (efficient for linked lists)

replaces the element last returned by next or previous with

the given value

set(value)

the index of the element that would be returned the next time

next is called on the iterator

nextIndex()

the index of the element that would be returned the next time

previous is called on the iterator

previousIndex()

true if there are more elements before the iteratorhasPrevious()

returns the element before the iterator (throws a

NoSuchElementException if there are none)
previous()

inserts an element just after the iterator's positionadd(value)

