
1

CSE 373

Algorithm Analysis and Runtime Complexity

slides created by Marty Stepp

http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

2

Evaluating an algorithm
• How to know whether a given algorithm is good, efficient, etc.?

• One idea: Implement it, run it, time it / measure it (averaging trials)

� Pros?

• Find out how the system effects performance

• Stress testing – how does it perform in dynamic environment

• No math!

� Cons?

• Need to implement code (takes time)

• Can be hard to estimate performance

• When comparing two algorithms, all other factors need to be held constant

(e.g., same computer, OS, processor, load)

3

Range algorithm

How efficient is this algorithm? Can it be improved?

// returns the range of values in the given array;

// the difference between elements furthest apart

// example: range({17, 29, 11, 4, 20, 8}) is 25

public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values

for (int i = 0; i < numbers.length; i++) {

for (int j = 0; j < numbers.length; j++) {

int diff = Math.abs(numbers[j] – numbers[i]);

if (diff > maxDiff) {

maxDiff = diff;

}

}

}

return diff;

}

4

Range algorithm 2

A slightly better version:

// returns the range of values in the given array;

// the difference between elements furthest apart

// example: range({17, 29, 11, 4, 20, 8}) is 25

public static int range(int[] numbers) {

int maxDiff = 0; // look at each pair of values

for (int i = 0; i < numbers.length; i++) {

for (int j = i + 1; j < numbers.length; j++) {

int diff = Math.abs(numbers[j] – numbers[i]);

if (diff > maxDiff) {

maxDiff = diff;

}

}

}

return diff;

}

5

Range algorithm 3

A MUCH faster version. Why is it so much better?

// returns the range of values in the given array;

// example: range({17, 29, 11, 4, 20, 8}) is 25

public static int range(int[] numbers) {

int max = numbers[0]; // find max/min values

int min = max;

for (int i = 1; i < numbers.length; i++) {

if (numbers[i] < min) {

min = numbers[i];

}

if (numbers[i] > max) {

max = numbers[i];

}

}

return max - min;

}

6

Runtime of each version

• Version 1: Version 3:

• Version 2:

7

Max subsequence sum

• Write a method maxSum to find the largest sum of any contiguous

subsequence in an array of integers.

� Easy for all positives: include the whole array.

� What if there are negatives?

� (Let's define the max to be 0 if the array is entirely negative.)

• Ideas for algorithms?

-8

7

22

6index 0 1 2 3 4 5 8

value 2 1 -4 10 15 -2 5

Largest sum: 10 + 15 + -2 + 22 = 45

-8

7

22

6index 0 1 2 3 4 5 8

value 2 1 -4 10 15 -2 5

8

Algorithm 1 pseudocode
maxSum(a):

max = 0.

for each starting index i:

for each ending index j:

sum = add the elements from a[i] to a[j].

if sum > max,

max = sum.

return max.

-8

7

22

6index 0 1 2 3 4 5 8

value 2 1 -4 10 15 -2 5

9

Algorithm 1 code

• How efficient is this algorithm?

� Poor. It takes a few seconds to process 2000 elements.

public static int maxSum1(int[] a) {

int max = 0;

for (int i = 0; i < a.length; i++) {

for (int j = i; j < a.length; j++) {

// sum = add the elements from a[i] to a[j].

int sum = 0;

for (int k = i; k <= j; k++) {

sum += a[k];

}

if (sum > max) {

max = sum;

}

}

}

return max;

}

10

Flaws in algorithm 1

• Observation: We are redundantly re-computing sums.

� For example, we compute the sum between indexes 2 and 5:

a[2] + a[3] + a[4] + a[5]

� Next we compute the sum between indexes 2 and 6:

a[2] + a[3] + a[4] + a[5] + a[6]

� We already had computed the sum of 2-5, but we compute it again as

part of the 2-6 computation.

� Let's write an improved version that avoids this flaw.

11

Algorithm 2 code

• How efficient is this algorithm?

� Mediocre. It can process 10,000s of elements per second.

public static int maxSum2(int[] a) {

int max = 0;

for (int i = 0; i < a.length; i++) {

int sum = 0;

for (int j = i; j < a.length; j++) {

sum += a[j];

if (sum > max) {

max = sum;

}

}

}

return max;

}

12

A clever solution

• Claim 1 : The max range cannot start with a negative-sum range.

• Claim 2 : If sum(i, j-1) ≥ 0 and sum(i, j) < 0, any max range that ends

at j+1 or higher cannot start at any of i through j.

� Together, these observations lead to a very clever algorithm...

sum(i, k) < sum(j+1, k)

sum(j+1, k)< 0

k...j+1j...i

sum(?, k) < sum(j+1, k)

sum(j+1, k)< 0

sum(j+1, k)< 0≥ 0

k...j+1jj-1...i

13

Algorithm 3 code

• How efficient is this algorithm?

� Excellent. It can handle many millions of elements per second!

public static int maxSum3(int[] a) {

int max = 0;

int sum = 0;

int i = 0;

for (int j = 0; j < a.length; j++) {

if (sum < 0) { // if sum becomes negative, max range

i = j; // cannot start with any of i - j-1,

sum = 0; // (Claim 2) so move i up to j

}

sum += a[j];

if (sum > max) {

max = sum;

}

}

return max;

}

14

Analyzing efficiency

• efficiency: A measure of the use of computing resources by code.

� most commonly refers to run time; but could be memory, etc.

• Rather than writing and timing algorithms, let's analyze them.

Code is hard to analyze, so let's make the following assumptions:

� Any single Java statement takes a constant amount of time to run.

� The runtime of a sequence of statements is the sum of their runtimes.

� An if/else's runtime is the runtime of the if test, plus the runtime of

whichever branch of code is chosen.

� A loop's runtime, if the loop repeats N times, is N times the runtime of

the statements in its body.

� A method call's runtime is measured by the total of the statements

inside the method's body.

15

Runtime example
statement1;

statement2;

for (int i = 1; i <= N; i++) {

statement3;

statement4;

statement5;

statement6;

}

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N/2; j++) {

statement7;

}

}

• How many statements will execute if N = 10? If N = 1000?

2

4N

½ N2

½ N2 + 4N + 2

16

Algorithm growth rates

• We measure runtime in proportion to the input data size, N.

� growth rate: Change in runtime as N changes.

• Say an algorithm runs 0.4N3 + 25N2 + 8N + 17 statements.

� Consider the runtime when N is extremely large .

(Almost any algorithm is fine if N is small.)

� We ignore constants like 25 because they are tiny next to N.

� The highest-order term (N3) dominates the overall runtime.

� We say that this algorithm runs "on the order of" N3.

� or O(N3) for short ("Big-Oh of N cubed")

17

Growth rate example

Consider these graphs of functions.

Perhaps each one represents an algorithm:

N3 + 2N2

100N2 + 1000

• Which is better?

18

Growth rate example

• How about now, at large values of N?

19

Complexity classes

• complexity class: A category of algorithm efficiency based on the

algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example

constant O(1) unchanged 10ms

logarithmic O(log2 N) increases slightly 175ms

linear O(N) doubles 3.2 sec

log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

20

Java collection efficiency

• * = operation can only be applied to certain element(s) / places

O(1)

O(1)*

O(1)*

-

-

O(1)*

Stack

O(1)

O(1)*

O(1)*

-

-

O(1)*

Queue

O(1)

O(1)

-

O(1)

-

O(1)

[Linked]
HashSet

/Map

O(1)

O(N)

O(1)

O(N)

O(N)

O(1)

Array
List

O(1)

O(N)

O(N)

O(N)

O(N)

O(1)

Linked
List

O(1)

O(log N)

-

O(log N)

-

O(log N)

TreeSet
/Map

Method Priority
Queue

add or put O(log N)*

add at index -

contains/
indexOf

-

get/set O(1)*

remove O(log N)*

size O(1)

21

Big-Oh defined

• Big-Oh is about finding an asymptotic upper bound.

• Formal definition of Big-Oh:

f(N) = O(g(N)), if there exists positive constants c , N0 such that

f(N) ≤ c · g(N) for all N ≥ N0 .

� We are concerned with how

f grows when N is large.

• not concerned with

small N or constant factors

� Lingo: "f(N) grows

no faster than g(N)."

c *

22

Big-Oh questions

• N + 2 = O(N) ?

� yes

• 2N = O(N) ?

� yes

• N = O(N2) ?

� yes

• N2 = O(N) ?
� no

• 100 = O(N) ?

� yes

• N = O(1) ?

� no

• 214N + 34 = O(N2) ?

� yes

23

Preferred Big-Oh usage

• Pick the tightest bound. If f(N) = 5N, then:

f(N) = O(N5)

f(N) = O(N3)

f(N) = O(N log N)

f(N) = O(N) ← preferred

• Ignore constant factors and low order terms:

f(N) = O(N), not f(N) = O(5N)

f(N) = O(N3), not f(N) = O(N3 + N2 + 15)

� Wrong: f(N) ≤ O(g(N))

� Wrong: f(N) ≥ O(g(N))

� Right: f(N) = O(g(N))

24

A basic Big-Oh proof

• Claim: 2N + 6 = O(N).

• To prove: Must find c, N0 such that for all N ≥ N0,

2N + 6 ≤ c · N

• Proof: Let c = 3, N0 = 6.

2N + 6 ≤ 3 · N

6 ≤ N

25

Math background: Exponents

• Exponents:

� XY , or "X to the Yth power";

X multiplied by itself Y times

• Some useful identities:

� XA · XB = XA+B

� XA / XB = XA-B

� (XA)B = XAB

� XN + XN = 2XN

� 2N + 2N = 2N+1

26

Math background: Logarithms

• Logarithms

� definition: XA = B if and only if logX B = A

� intuition: logX B means:

"the power X must be raised to, to get B"

� In this course, a logarithm with no base implies base 2.

log B means log2 B

• Examples

� log2 16 = 4 (because 24 = 16)

� log10 1000 = 3 (because 103 = 1000)

27

Logarithm bases

• Identities for logs with addition, multiplication, powers:

� log (A·B) = log A + log B

� log (A/B) = log A – log B

� log (AB) = B log A

• Identity for converting bases of a logarithm:

� example:

log432 = (log2 32) / (log2 4)

= 5 / 2

� Practically speaking, this means all logc are a constant factor away from

log2, so we can think of them as equivalent to log2 in Big-Oh analysis.

A

B
B

C

C
A

log

log
log =

28

More runtime examples

• What is the exact runtime and complexity class (Big-Oh)?

int sum = 0;

for (int i = 1; i <= N; i += c) {

sum++;

}

� Runtime = N / c = O(N).

int sum = 0;

for (int i = 1; i <= N; i *= c) {

sum++;

}

� Runtime = logc N = O(log N).

29

Binary search

• binary search successively eliminates half of the elements.

� Algorithm: Examine the middle element of the array.

• If it is too big, eliminate the right half of the array and repeat.

• If it is too small, eliminate the left half of the array and repeat.

• Else it is the value we're searching for, so stop.

� Which indexes does the algorithm examine to find value 42?

� What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

30

Binary search runtime

• For an array of size N, it eliminates ½ until 1 element remains.

N, N/2, N/4, N/8, ..., 4, 2, 1

� How many divisions does it take?

• Think of it from the other direction:

� How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

� Call this number of multiplications "x".

2x = N

x = log2 N

• Binary search is in the logarithmic (O(log N)) complexity class.

31

Math: Arithmetic series

• Arithmetic series notation (useful for analyzing runtime of loops):

� the sum of all values of Expr with each value of i between j--k

• Example:

= (2(0) + 1) + (2(1) + 1) + (2(2) + 1) + (2(3) + 1) + (2(4) + 1)

= 1 + 3 + 5 + 7 + 9

= 25

∑
=

k

ji

Expr

∑
=

+
4

0

12
i

i

32

Arithmetic series identities

• sum from 1 through N inclusive:

• Intuition:

� sum = 1 + 2 + 3 + ... + (N-2) + (N-1) + N

� sum = (1 + N) + (2 + N-1) + (3 + N-2) + ... // rearranged

// N/2 pairs total

• sum of squares:

() ()2

1 2

1
NO

NN
i

N

i

=
+

=∑
=

()() ()3

1

2

6

121
NO

NNN
i

N

i

=
++

=∑
=

33

Series runtime examples
• What is the exact runtime and complexity class (Big-Oh)?

int sum = 0;

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N * 2; j++) {

sum++;

}

}

� Runtime = N · 2N = O(N2).

int sum = 0;

for (int i = 1; i <= N; i++) {

for (int j = 1; j <= i; j++) {

sum++;

}

}

� Runtime = N (N + 1) / 2 = O(N2).

