## CSE 373

# Algorithm Analysis and Runtime Complexity 

slides created by Marty Stepp
http://www.cs.washington.edu/373/
© University of Washington, all rights reserved.

## Evaluating an algorithm

- How to know whether a given algorithm is good, efficient, etc.?
- One idea: Implement it, run it, time it / measure it (averaging trials)
- Pros?
- Find out how the system effects performance
- Stress testing - how does it perform in dynamic environment
- No math!
- Cons?
- Need to implement code (takes time)
- Can be hard to estimate performance
- When comparing two algorithms, all other factors need to be held constant (e.g., same computer, OS, processor, load)


## Range algorithm

How efficient is this algorithm? Can it be improved?
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range(\{17, 29, 11, 4, 20, 8\}) is 25
public static int range(int[] numbers) \{

```
int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {
            for (int j = 0; j < numbers.length; j++) {
                int diff = Math.abs(numbers[j] - numbers[i]);
                if (diff > maxDiff) {
                        maxDiff = diff;
        }
        }
    }
    return diff;
```

\}

## Range algorithm 2

A slightly better version:
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range(\{17, 29, 11, 4, 20, 8\}) is 25
public static int range(int[] numbers) \{

```
int maxDiff = 0; // look at each pair of values
for (int i = 0; i < numbers.length; i++) {
            for (int j = i + 1; j < numbers.length; j++) {
                        int diff = Math.abs(numbers[j] - numbers[i]);
            if (diff > maxDiff) {
                        maxDiff = diff;
        }
    }
    }
    return diff;
```

\}

## Range algorithm 3

A MUCH faster version. Why is it so much better?

```
// returns the range of values in the given array;
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int max = numbers[0]; // find max/min values
    int min = max;
    for (int i = 1; i < numbers.length; i++) {
            if (numbers[i] < min) {
            min = numbers[i];
            }
            if (numbers[i] > max) {
        max = numbers[i];
            }
    }
    return max - min;
```

\}

## Runtime of each version

## - Version 1:

| $\mathbf{N}$ | Runtime (ms) |
| :---: | :---: |
| 1000 | 15 |
| 2000 | 47 |
| 4000 | 203 |
| 8000 | 781 |
| 16000 | 3110 |
| 32000 | 12563 |
| 64000 | 49937 |



Input size ( N )

- Version 2 :

| $\mathbf{N}$ | Runtime (ms) |
| :---: | :---: |
| 1000 | 16 |
| 2000 | 16 |
| 4000 | 110 |
| 8000 | 406 |
| 16000 | 1578 |
| 32000 | 6265 |
| 64000 | 25031 |

Version 3:

| $\mathbf{N}$ | Runtime (ms) |
| :---: | :---: |
| 1000 | 0 |
| 2000 | 0 |
| 4000 | 0 |
| 8000 | 0 |
| 16000 | 0 |
| 32000 | 0 |
| 64000 | 0 |
| 128000 | 0 |
| 256000 | 0 |
| 5 I 2000 | 0 |
| 1 e 6 | 0 |
| 2 e 6 | 16 |
| 4 e 6 | 31 |
| 8 e 6 | 47 |
| I .67 e 7 | 94 |
| 3.3 e 7 | 188 |
| 6.5 e 7 | 453 |
| 1.3 e 8 | 797 |
| 2.6 e 8 | 1578 |



Input size (N)

$$
\text { Input size }(\mathrm{N})
$$

## Max subsequence sum

- Write a method maxsum to find the largest sum of any contiguous subsequence in an array of integers.
- Easy for all positives: include the whole array.
- What if there are negatives?

| index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| value | 2 | 1 | -4 | 10 | 15 | -2 | 22 | -8 | 5 |

Largest sum: $10+15+-2+22=45$

- (Let's define the max to be 0 if the array is entirely negative.)
- Ideas for algorithms?


## Algorithm 1 pseudocode

maxSum (a):

```
max = 0.
    for each starting index i:
        for each ending index j:
        sum = add the elements from a[i] to a[j].
        if sum > max,
            max = sum.
```

        return max.
    | index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| value | 2 | 1 | -4 | 10 | 15 | -2 | 22 | -8 | 5 |

## Algorithm 1 code

- How efficient is this algorithm?
- Poor. It takes a few seconds to process 2000 elements.

```
public static int maxSum1(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        for (int j = i; j < a.length; j++) {
        // sum = add the elements from a[i] to a[j].
        int sum = 0;
        for (int k = i; k <= j; k++) {
        sum += a[k];
        }
        if (sum > max) {
        max = sum;
        }
        }
    }
    return max;
}
```


## Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
- For example, we compute the sum between indexes 2 and 5: $a[2]+a[3]+a[4]+a[5]$
- Next we compute the sum between indexes 2 and 6: $a[2]+a[3]+a[4]+a[5]+a[6]$
- We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.
- Let's write an improved version that avoids this flaw.


## Algorithm 2 code

- How efficient is this algorithm?
- Mediocre. It can process 10,000s of elements per second.

```
public static int maxSum2(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        int sum = 0;
        for (int j = i; j < a.length; j++) {
        sum += a[j];
        if (sum > max) {
                        max = sum;
        }
        }
    }
    return max;
}
```


## A clever solution

- Claim 1 : The max range cannot start with a negative-sum range.

| i | ... | j | j+1 | .. | k |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | < 0 |  |  | sum( $\mathrm{j}+1$ |  |
|  | $\operatorname{sum}(i, k)<\operatorname{sum}(j+1, k)$ |  |  |  |  |

- Claim 2 : If sum $(i, j-1) \geq 0$ and $\operatorname{sum}(i, j)<0$, any max range that ends at $\mathrm{j}+1$ or higher cannot start at any of i through j .

| i | $\ldots$ | $\mathrm{j}-1$ | j | $\mathrm{j}+1$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\geq 0$ |  | $<0$ | $\operatorname{sum}(j+1, k)$ |  |  |
| $<0$ |  |  | $\operatorname{sum}(j+1, k)$ |  |  |
|  |  | $\operatorname{sum}(?, k)<\operatorname{sum}(j+1, k)$ |  |  |  |

- Together, these observations lead to a very clever algorithm...


## Algorithm 3 code

- How efficient is this algorithm?
- Excellent. It can handle many millions of elements per second!

```
public static int maxSum3(int[] a) {
    int max = 0;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < a.length; j++) {
        if (sum < 0) { // if sum becomes negative, max range
        i = j; // cannot start with any of i - j-1,
        sum = 0; // (Claim 2) so move i up to j
        }
        sum += a[j];
        if (sum > max) {
        max = sum;
        }
    }
    return max;
}
```


## Analyzing efficiency

- efficiency: A measure of the use of computing resources by code.
- most commonly refers to run time; but could be memory, etc.
- Rather than writing and timing algorithms, let's analyze them. Code is hard to analyze, so let's make the following assumptions:
- Any single Java statement takes a constant amount of time to run.
- The runtime of a sequence of statements is the sum of their runtimes.
- An if/else's runtime is the runtime of the if test, plus the runtime of whichever branch of code is chosen.
- A loop's runtime, if the loop repeats $N$ times, is $N$ times the runtime of the statements in its body.
- A method call's runtime is measured by the total of the statements inside the method's body.


## Runtime example

## statement1; <br> statement2; <br> 



- How many statements will execute if $N=10$ ? If $N=1000$ ?


## Algorithm growth rates

- We measure runtime in proportion to the input data size, $N$.
- growth rate: Change in runtime as $N$ changes.
- Say an algorithm runs $\mathbf{0 . 4} \mathbf{N}^{\mathbf{3}}+\mathbf{2 5} \mathbf{N}^{2}+\mathbf{8 N} \mathbf{+ 1 7}$ statements.
- Consider the runtime when $N$ is extremely large . (Almost any algorithm is fine if $N$ is small.)
- We ignore constants like 25 because they are tiny next to $N$.
- The highest-order term $\left(N^{3}\right)$ dominates the overall runtime.
- We say that this algorithm runs "on the order of" $N^{3}$.
- or O( $\mathbf{N}^{3}$ ) for short ("Big-Oh of $N$ cubed")


## Growth rate example

Consider these graphs of functions.
Perhaps each one represents an algorithm:
$N^{3}+2 N^{2}$
$100 N^{2}+1000$

- Which is better?



## Growth rate example

- How about now, at large values of $N$ ?



## Complexity classes

- complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size $N$.

| Class | Big-Oh | If you double $\boldsymbol{N}, \ldots$ | Example |
| :--- | :--- | :--- | :--- |
| constant | $\mathrm{O}(1)$ | unchanged | 10 ms |
| logarithmic | $\mathrm{O}\left(\log _{2} N\right)$ | increases slightly | 175 ms |
| linear | $\mathrm{O}(N)$ | doubles | 3.2 sec |
| log-linear | $\mathrm{O}\left(N \log _{2} N\right)$ | slightly more than doubles | 6 sec |
| quadratic | $\mathrm{O}\left(N^{2}\right)$ | quadruples | 1 min 42 sec |
| cubic | $\mathrm{O}\left(N^{3}\right)$ | multiplies by 8 | 55 min |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| exponential | $\mathrm{O}\left(2^{N}\right)$ | multiplies drastically | $5^{*} 10^{61}$ years |

## Java collection efficiency

| Method | Array <br> List | Linked <br> List | Stack | Queue | TreeSet <br> /Map | [Linked] <br> HashSet <br> /Map | Priority <br> Queue |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| add or put | $\mathrm{O}(1)$ | $\mathrm{O}(1)$ | $\mathrm{O}(1)^{*}$ | $\mathrm{O}(1)^{*}$ | $\mathrm{O}(\log N)$ | $\mathrm{O}(1)$ | $\mathrm{O}(\log N)^{*}$ |
| add at index | $\mathrm{O}(N)$ | $\mathrm{O}(N)$ | - | - | - | - | - |
| contains/ <br> indexOf | $\mathrm{O}(N)$ | $\mathrm{O}(N)$ | - | - | $\mathrm{O}(\log N)$ | $\mathrm{O}(1)$ | - |
| get/set | $\mathrm{O}(1)$ | $\mathrm{O}(N)$ | $\mathrm{O}(1)^{*}$ | $\mathrm{O}(1)^{*}$ | - | - | $\mathrm{O}(1)^{*}$ |
| remove | $\mathrm{O}(N)$ | $\mathrm{O}(N)$ | $\mathrm{O}(1)^{*}$ | $\mathrm{O}(1)^{*}$ | $\mathrm{O}(\log N)$ | $\mathrm{O}(1)$ | $\mathrm{O}(\log N)^{*}$ |
| size | $\mathrm{O}(1)$ |

-     * = operation can only be applied to certain element(s) / places


## Big-Oh defined

- Big-Oh is about finding an asymptotic upper bound.
- Formal definition of Big-Oh:
$f(N)=O(g(N))$, if there exists positive constants $c, N_{0}$ such that $f(N) \leq c \cdot g(N)$ for all $N \geq N_{0}$.
- We are concerned with how
$f$ grows when $N$ is large.
- not concerned with small $N$ or constant factors
- Lingo: "f(N) grows no faster than $g(N) . "$



## Big-Oh questions

- $N+2=\mathrm{O}(N)$ ?
- yes
- $2 N=O(N)$ ?
- yes
- $N=O\left(N^{2}\right)$ ?
- yes
- $N^{2}=\mathrm{O}(N)$ ?
- no
- $100=0(N)$ ?
- yes
- $N=O(1)$ ?
- no
- $214 N+34=\mathrm{O}\left(N^{2}\right)$ ?
- yes


## Preferred Big-Oh usage

- Pick the tightest bound. If $f(N)=5 N$, then:

$$
\begin{aligned}
& f(N)=\mathrm{O}\left(N^{5}\right) \\
& f(N)=\mathrm{O}\left(N^{3}\right) \\
& f(N)=\mathrm{O}(N \log N) \\
& f(N)=\mathrm{O}(N) \quad \leftarrow \text { preferred }
\end{aligned}
$$

- Ignore constant factors and low order terms:

$$
\begin{array}{ll}
f(N)=O(N), & \text { not } f(N)=O(5 N) \\
f(N)=O\left(N^{3}\right), & \text { not } f(N)=O\left(N^{3}+N^{2}+15\right)
\end{array}
$$

- Wrong: $f(N) \leq O(g(N))$
- Wrong: $f(N) \geq O(g(N))$
- Right: $f(N)=O(g(N))$


## A basic Big-Oh proof

- Claim: $2 N+6=O(N)$.
- To prove: Must find c, $N_{0}$ such that for all $N \geq N_{0}$,

$$
2 N+6 \leq c \cdot N
$$

- Proof: Let c $=3, N_{0}=6$.

$$
\begin{aligned}
2 N+6 & \leq 3 \cdot N \\
6 & \leq N
\end{aligned}
$$

## Math background: Exponents

- Exponents:
- $X^{\curlyvee}$, or "X to the $Y^{\text {th }}$ power"; $X$ multiplied by itself $Y$ times
- Some useful identities:
- $X^{A} \cdot X^{B}=X^{A+B}$
- $X^{A} / X^{B}=X^{A-B}$
- $\left(X^{A}\right)^{B}=X^{A B}$
- $X^{N}+X^{N}=2 X^{N}$
- $2^{N}+2^{N}=2^{N+1}$


## Math background: Logarithms

- Logarithms
- definition: $X^{A}=B$ if and only if $\log _{x} B=A$
- intuition: $\log _{\mathrm{x}} \mathrm{B}$ means:
"the power X must be raised to, to get B "
- In this course, a logarithm with no base implies base 2. $\log B$ means $\log _{2} B$
- Examples
- $\log _{2} 16=4 \quad$ (because $2^{4}=16$ )
- $\log _{10} 1000=3$ (because $10^{3}=1000$ )


## Logarithm bases

- Identities for logs with addition, multiplication, powers:
- $\log (A \cdot B)=\log A+\log B$
- $\log (A / B)=\log A-\log B$
- $\log \left(A^{B}\right)=B \log A$
- Identity for converting bases of a logarithm:

$$
\log _{A} B=\frac{\log _{C} B}{\log _{C} A}
$$

- example:

$$
\begin{aligned}
\log _{4} 32 & =\left(\log _{2} 32\right) /\left(\log _{2} 4\right) \\
& =5 / 2
\end{aligned}
$$

- Practically speaking, this means all $\log _{c}$ are a constant factor away from $\log _{2}$, so we can think of them as equivalent to $\log _{2}$ in Big-Oh analysis.


## More runtime examples

- What is the exact runtime and complexity class (Big-Oh)?

```
int sum = 0;
for (int i = 1; i <= N; i += C) {
    sum++;
}
- Runtime = N/c}=\textrm{O}(N)
int sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}
- Runtime \(=\log _{\mathrm{c}} N=\mathrm{O}(\log N)\).
```


## Binary search

- binary search successively eliminates half of the elements.
- Algorithm: Examine the middle element of the array.
- If it is too big, eliminate the right half of the array and repeat.
- If it is too small, eliminate the left half of the array and repeat.
- Else it is the value we're searching for, so stop.
- Which indexes does the algorithm examine to find value 42?
- What is the runtime complexity class of binary search?



## Binary search runtime

- For an array of size $N$, it eliminates $1 / 2$ until 1 element remains.

$$
N, N / 2, N / 4, N / 8, \ldots, 4,2,1
$$

- How many divisions does it take?
- Think of it from the other direction:
- How many times do I have to multiply by 2 to reach $N$ ?

$$
1,2,4,8, \ldots, N / 4, N / 2, N
$$

- Call this number of multiplications " $x$ ".

$$
\begin{aligned}
& 2^{x}=N \\
& x=\log _{2} N
\end{aligned}
$$

- Binary search is in the logarithmic $(O(\log N))$ complexity class.


## Math: Arithmetic series

- Arithmetic series notation (useful for analyzing runtime of loops):

$$
\sum_{i=1}^{n} E x p r
$$

- the sum of all values of Expr with each value of $i$ between $j--k$
- Example:

$$
\begin{aligned}
& \sum_{i=0}^{4} 2 i+1 \\
= & (2(0)+1)+(2(1)+1)+(2(2)+1)+(2(3)+1)+(2(4)+1) \\
= & 1+3+5+7+9 \\
= & 25
\end{aligned}
$$

## Arithmetic series identities

- sum from 1 through $N$ inclusive:

$$
\sum_{i=1}^{N} i=\frac{N(N+1)}{2}=O\left(N^{2}\right)
$$

- Intuition:
- sum $=1+2+3+\ldots+(N-2)+(N-1)+N$
- $\operatorname{sum}=(1+N)+(2+N-1)+(3+N-2)+\ldots$
// rearranged
// N/2 pairs total
- sum of squares:

$$
\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}=O\left(N^{3}\right)
$$

## Series runtime examples

- What is the exact runtime and complexity class (Big-Oh)?

```
int sum = 0;
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N * 2; j++) {
        sum++;
    }
}
- Runtime = N}\cdot2N=O(N2)
int sum = 0;
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= i; j++) {
        sum++;
    }
}
- Runtime \(=N(N+1) / 2=O\left(N^{2}\right)\).
```

