CSE 373

Algorithm Analysis and Runtime Complexity

slides created by Marty Stepp http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

1

Evaluating an algorithm

- How to know whether a given algorithm is good, efficient, etc.?
- One idea: Implement it, run it, time it / measure it (averaging trials)
 - Pros?
 - Find out how the system effects performance
 - Stress testing how does it perform in dynamic environment
 - No math!
 - Cons?
 - Need to implement code (takes time)
 - Can be hard to estimate performance
 - When comparing two algorithms, all other factors need to be held constant (e.g., same computer, OS, processor, load)

Range algorithm

How efficient is this algorithm? Can it be improved?

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int maxDiff = 0; // look at each pair of values
    for (int i = 0; i < numbers.length; i++) {</pre>
        for (int j = 0; j < numbers.length; j++) {
            int diff = Math.abs(numbers[j] - numbers[i]);
            if (diff > maxDiff) {
                maxDiff = diff;
    return diff;
```

Range algorithm 2

A slightly better version:

```
// returns the range of values in the given array;
// the difference between elements furthest apart
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
    int maxDiff = 0; // look at each pair of values
    for (int i = 0; i < numbers.length; i++) {</pre>
        for (int j = i + 1; j < numbers.length; j++) {
            int diff = Math.abs(numbers[j] - numbers[i]);
            if (diff > maxDiff) {
                maxDiff = diff;
    return diff;
```

Range algorithm 3

A MUCH faster version. Why is it so much better?

```
// returns the range of values in the given array;
// example: range({17, 29, 11, 4, 20, 8}) is 25
public static int range(int[] numbers) {
   int min = max;
   for (int i = 1; i < numbers.length; i++) {</pre>
       if (numbers[i] < min) {</pre>
          min = numbers[i];
       if (numbers[i] > max) {
          max = numbers[i];
       }
   return max - min;
```

Runtime of each version

• Version 1:

N	Runtime (ms)
1000	15
2000	47
4000	203
8000	781
16000	3110
32000	12563
64000	49937

• Version 2:

		-
N	Runtime (ms)] :
1000	16] :
2000	16] :
4000	110	
8000	406	
16000	1578	
32000	6265	
64000	2503 I]
		-

Input size (N)

Version 3:

Input size (N)

Max subsequence sum

- Write a method maxSum to find the largest sum of any contiguous subsequence in an array of integers.
 - Easy for all positives: include the whole array.
 - What if there are negatives?

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Largest sum: 10 + 15 + -2 + 22 = 45

(Let's define the max to be 0 if the array is entirely negative.)

• Ideas for algorithms?

Algorithm 1 pseudocode

```
maxSum(a):
    max = 0.
    for each starting index i:
        for each ending index j:
            sum = add the elements from a[i] to a[j].
            if sum > max,
            max = sum.
```

return max.

index	0	1	2	3	4	5	6	7	8
value	2	1	-4	10	15	-2	22	-8	5

Algorithm 1 code

- How efficient is this algorithm?
 - Poor. It takes a few seconds to process 2000 elements.

```
public static int maxSum1(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        for (int j = i; j < a.length; j++) {
            // sum = add the elements from a[i] to a[j].
            int sum = 0;
            for (int k = i; k \le j; k++) {
                sum += a[k];
            }
            if (sum > max) {
                max = sum;
            }
    return max;
```

Flaws in algorithm 1

- Observation: We are redundantly re-computing sums.
 - For example, we compute the sum between indexes 2 and 5:
 a[2] + a[3] + a[4] + a[5]
 - Next we compute the sum between indexes 2 and 6:
 a[2] + a[3] + a[4] + a[5] + a[6]
 - We already had computed the sum of 2-5, but we compute it again as part of the 2-6 computation.
 - Let's write an improved version that avoids this flaw.

Algorithm 2 code

- How efficient is this algorithm?
 - Mediocre. It can process 10,000s of elements per second.

```
public static int maxSum2(int[] a) {
    int max = 0;
    for (int i = 0; i < a.length; i++) {
        int sum = 0;
        for (int j = i; j < a.length; j++) {
            sum += a[j];
            if (sum > max) {
                max = sum;
            }
        }
    }
    return max;
}
```

A clever solution

• *Claim 1* : The max range cannot start with a negative-sum range.

 Claim 2 : If sum(i, j-1) ≥ 0 and sum(i, j) < 0, any max range that ends at j+1 or higher cannot start at any of i through j.

i	•••	j-1	j	j+1		k
	≥ 0		< 0		sum(j+1, k)	
< 0					sum(j+1, k)	
		sum(?, k) < sum(j+1, k)				

Together, these observations lead to a very clever algorithm...

Algorithm 3 code

- How efficient is this algorithm?
 - Excellent. It can handle many millions of elements per second!

```
public static int maxSum3(int[] a) {
    int max = 0;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < a.length; j++) {
        if (sum < 0) { // if sum becomes negative, max range
           i = j; // cannot start with any of i - j-1,
           sum = 0; // (Claim 2) so move i up to j
        sum += a[j];
        if (sum > max) {
           max = sum;
    return max;
```

Analyzing efficiency

- efficiency: A measure of the use of computing resources by code.
 - most commonly refers to run time; but could be memory, etc.
- Rather than writing and timing algorithms, let's *analyze* them. Code is hard to analyze, so let's make the following assumptions:
 - Any *single Java statement* takes a constant amount of time to run.
 - The runtime of a sequence of statements is the sum of their runtimes.
 - An *if/else*'s runtime is the runtime of the if test, plus the runtime of whichever branch of code is chosen.
 - A *loop*'s runtime, if the loop repeats N times, is N times the runtime of the statements in its body.
 - A method call's runtime is measured by the total of the statements inside the method's body.

Runtime example

Algorithm growth rates

- We measure runtime in proportion to the input data size, N.
 - growth rate: Change in runtime as *N* changes.
- Say an algorithm runs **0.4***N*³ + **25***N*² + **8***N* + **17** statements.
 - Consider the runtime when N is *extremely large*.
 (Almost any algorithm is fine if N is small.)
 - We ignore constants like 25 because they are tiny next to *N*.
 - The highest-order term (N³) dominates the overall runtime.

- We say that this algorithm runs "on the order of" N^3 .
- or O(N³) for short ("Big-Oh of N cubed")

Growth rate example

Growth rate example

• How about now, at large values of N?

Complexity classes

• **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size *N*.

Class	Big-Oh	If you double N,	Example
constant	O(1)	unchanged	10ms
logarithmic	$O(\log_2 N)$	increases slightly	175ms
linear	O(<i>N</i>)	doubles	3.2 sec
log-linear	$O(N \log_2 N)$	slightly more than doubles	6 sec
quadratic	O(<i>N</i> ²)	quadruples	1 min 42 sec
cubic	O(<i>N</i> ³)	multiplies by 8	55 min
	•••		
exponential	O(2 ^N)	multiplies drastically	5 * 10 ⁶¹ years

Java collection efficiency

Method	Array List	Linked List	Stack	Queue	TreeSet /Map	[Linked] HashSet /Map	Priority Queue
add or put	O(1)	O(1)	O(1)*	O(1)*	O(log N)	O(1)	O(log <i>N</i>)*
add at index	O(<i>N</i>)	O(<i>N</i>)	-	-	-	-	-
contains/ indexOf	O(<i>N</i>)	O(<i>N</i>)	-	-	O(log N)	O(1)	-
get/set	O(1)	O(<i>N</i>)	O(1)*	O(1)*	-	-	O(1)*
remove	O(<i>N</i>)	O(<i>N</i>)	O(1)*	O(1)*	O(log N)	O(1)	O(log N)*
size	O(1)	O(1)	O(1)	O(1)	O(1)	O(1)	O(1)

* = operation can only be applied to certain element(s) / places

Big-Oh defined

- Big-Oh is about finding an *asymptotic upper bound*.
- Formal definition of Big-Oh:

f(N) = O(g(N)), if there exists positive constants c, N_0 such that

 $f(N) \leq c \cdot g(N)$ for all $N \geq N_0$.

- We are concerned with how f grows when N is large.
 - not concerned with small N or constant factors
- Lingo: "f(N) grows no faster than g(N)."

Big-Oh questions

- N + 2 = O(N)?
 - yes
- 2N = O(N) ?
 - yes
- $N = O(N^2)$?
 - yes
- $N^2 = O(N)$?
 - no no
- 100 = O(N) ?
 - yes
- *N* = O(1) ?
 - no no
- $214N + 34 = O(N^2)$?
 - yes

Preferred Big-Oh usage

• Pick the tightest bound. If f(N) = 5N, then:

 $f(N) = O(N^5)$ $f(N) = O(N^3)$ $f(N) = O(N \log N)$ $f(N) = O(N) \quad \leftarrow \text{preferred}$

Ignore constant factors and low order terms:

f(N)=O(N),	not $f(N) = O(5N)$
$f(N)=\mathrm{O}(N^3),$	not $f(N) = O(N^3 + N^2 + 15)$

- Wrong: $f(N) \leq O(g(N))$
- Wrong: $f(N) \ge O(g(N))$
- Right: f(N) = O(g(N))

A basic Big-Oh proof

- *Claim*: 2N + 6 = O(N).
- To prove: Must find c, N_0 such that for all $N \ge N_0$, $2N + 6 \le c \cdot N$
- Proof: Let c = 3, $N_0 = 6$. $2N + 6 \le 3 \cdot N$ $6 \le N$

Math background: Exponents

• Exponents:

- X^Y, or "X to the Yth power";
 X multiplied by itself Y times
- Some useful identities:
 - $X^{A} \cdot X^{B} = X^{A+B}$
 - $X^A / X^B = X^{A-B}$
 - $(X^A)^B = X^{AB}$
 - $X^N + X^N = 2X^N$
 - $2^{N} + 2^{N} = 2^{N+1}$

Math background: Logarithms

- Logarithms
 - *definition*: X^A = B if and only if log_X B = A
 - *intuition*: log_x B means:
 "the power X must be raised to, to get B"
 - In this course, a logarithm with no base implies base 2.
 log B means log₂ B
- Examples
 - $\log_2 16 = 4$ (because $2^4 = 16$)
 - $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

Logarithm bases

- Identities for logs with addition, multiplication, powers:
 - log (A·B) = log A + log B
 - log (A/B) = log A log B
 - log (A^B) = B log A
- Identity for converting bases of a logarithm:

$$\log_A B = \frac{\log_C B}{\log_C A}$$

- example: log₄32 = (log₂32) / (log₂4) = 5 / 2
- Practically speaking, this means all log_c are a constant factor away from log₂, so we can think of them as equivalent to log₂ in Big-Oh analysis.

More runtime examples

• What is the exact runtime and complexity class (Big-Oh)?

```
int sum = 0;
for (int i = 1; i <= N; i += c) {
    sum++;
}</pre>
```

• Runtime = N / c = O(N).

```
int sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}</pre>
```

• Runtime = $\log_c N = O(\log N)$.

Binary search

• binary search successively eliminates half of the elements.

- *Algorithm:* Examine the middle element of the array.
 - If it is too big, eliminate the right half of the array and repeat.
 - If it is too small, eliminate the left half of the array and repeat.
 - Else it is the value we're searching for, so stop.
- Which indexes does the algorithm examine to find value 42?
- What is the runtime complexity class of binary search?

Binary search runtime

- For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1
 - How many divisions does it take?
- Think of it from the other direction:
 - How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
 - Call this number of multiplications "x".

```
2^{x} = Nx = \log_{2} N
```

• Binary search is in the **logarithmic** (O(log N)) complexity class.

Math: Arithmetic series

- Arithmetic series notation (useful for analyzing runtime of loops): $\sum_{i=j}^{k} Expr$
 - the sum of all values of *Expr* with each value of *i* between *j*--*k*
- Example:

$$\sum_{i=0}^{4} 2i + 1$$

= (2(0) + 1) + (2(1) + 1) + (2(2) + 1) + (2(3) + 1) + (2(4) + 1)
= 1 + 3 + 5 + 7 + 9
= 25

Arithmetic series identities

• sum from 1 through N inclusive:

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} = O(N^2)$$

• Intuition:

• sum =
$$(1 + N) + (2 + N-1) + (3 + N-2) + ...$$

• sum of squares:

$$\sum_{i=1}^{N} i^{2} = \frac{N(N+1)(2N+1)}{6} = O(N^{3})$$

Series runtime examples

• What is the exact runtime and complexity class (Big-Oh)?

```
int sum = 0;
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N * 2; j++) {
        sum++;
    }
}
    Runtime = N · 2N = O(N<sup>2</sup>).
```

```
int sum = 0;
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= i; j++) {
        sum++;
    }
}

Runtime = N (N + 1) / 2 = O(N<sup>2</sup>).
```